首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   5篇
  国内免费   3篇
化学   152篇
晶体学   1篇
数学   1篇
物理学   9篇
  2024年   2篇
  2023年   1篇
  2022年   18篇
  2021年   14篇
  2020年   7篇
  2019年   13篇
  2018年   11篇
  2017年   5篇
  2016年   11篇
  2015年   9篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   5篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   6篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
Plant-derived compounds are emerging as an alternative choice to synthetic fungicides. Chloroform–methanol extract, obtained from the bark of Zanthoxylum rhoifolium, a member of Rutaceae, showed a fungistatic effect on Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata, Colletotrichum gloeosporioides and Clonostachys rosea, when added to the growth medium at different concentrations. A fraction obtained by gel separation and containing the alkaloid O-Methylcapaurine showed significant fungistatic effect against B. cinerea and S. sclerotiorum, two of the most destructive phytopathogenic fungi. The underlying mechanism of such an inhibition was further investigated in B. cinerea, a fungus highly prone to develop fungicide resistance, by analysing the expression levels of a set of genes (BcatrB, P450, CYP51 and TOR). O-Methylcapaurine inhibited the expression of all the analysed genes. In particular, the expression of BcatrB gene, encoding a membrane drug transporter involved in the resistance to a wide range of xenobiotic compounds, was strongly inhibited (91%).  相似文献   
2.
The ammonium sulfate-precipitated fraction from mycelia and culture-filtrates and the crude, cell-free culture filtrates from the growth medium of the fungiChrysosporium palmorum, Eurotium rubrum, Micromucor isabellina, andPythium aphanidermatum when aseptically added to cell suspensions ofCantharanthus roseus caused a rapid and dramatic increase in indole alkaloid biosynthesis. Up to 400 μg/L ajmalicine and 600 μg/L catharanthine were detected in C.roseus cell suspension grown in the presence of theM. isabellina fungal culture filtrate for 3 d. Untreated cells produced only trace levels of ajmalicine and catharanthine per liter of cell suspension after 15 d of culture.  相似文献   
3.
Poly[(R)-3-hydroxybutyrate] (PHB) was blended with an aliphatic copolyester, which was synthesized by the esterification of adipic acid, ethylene glycol, and lactic acid. The blend showed a single Tg, which varied systematically but convexly upwards with the composition. The growth rate of PHB spherulites, the crystallization temperature, and the equilibrium melting temperature of the blend were decreased as the amount of the copolyester was increased. Therefore, the blend system was determined to be compatible. However, the degree of crystallinity, and the enthalpies of crystallization and fusion of PHB in the blend remained almost constant, regardless of the compositional change, although the crystallization rate was decreased upon blending. No chemical change such as transesterification was observed as a result of the blending, yet there was a slight change in the crystalline morphology of PHB. The rate of fungal degradation was lowered with an increase in the copolyester content of the blend. © 1996 John Wiley & Sons, Inc.  相似文献   
4.
The first asymmetric total synthesis of both enantiomers of the natural products colletorin A and colletochlorin A is presented. The proposed methodology is based on the coupling reaction between highly substituted aromatic Gilman cuprates and optically active allyl bromides, in turn obtained by Sharpless asymmetric dihydroxylation. The latter ensured a high degree of regio- and stereocontrol in the enantioselective step of the synthesis. The same synthetic strategy has been also applied for the preparation of differently halogenated synthetic analogues of colletochlorin A in high enantiomeric purity. The enantioselective synthesis of colletorin A and colletochlorin A allows to reliably assign their absolute configuration. Preliminary assessment of their herbicidal and insecticidal properties evidence the possibility to modulate the bioactivity of these compounds, highlighting its dependence on both the absolute stereochemistry and the halogen nature.  相似文献   
5.
The colinearity of canonical modular polyketide synthases, which creates a direct link between multienzyme structure and the chemical structure of the biosynthetic end-product, has become a cornerstone of knowledge-based genome mining. Herein, we report genetic and enzymatic evidence for the remarkable role of an enoylreductase in the polyketide synthase for azalomycin F biosynthesis. This internal enoylreductase domain, previously identified as acting only in the second of two chain extension cycles on an initial iterative module, is shown to also catalyze enoylreduction in trans within the next module. The mechanism for this rare deviation from colinearity appears to involve direct cross-modular interaction of the reductase with the longer acyl chain, rather than back transfer of the substrate into the iterative module, suggesting an additional and surprising plasticity in natural PKS assembly-line catalysis.  相似文献   
6.
    
Ageratum conyzoides L. (Family—Asteraceae) is an annual aromatic invasive herb, mainly distributed over the tropical and subtropical regions of the world. It owns a reputed history of indigenous remedial uses, including as a wound dressing, an antimicrobial, and mouthwash as well as in treatment of dysentery, diarrhea, skin diseases, etc. In this review, the core idea is to present the antifungal potential of the selected medicinal plant and its secondary metabolites against different fungal pathogens. Additionally, toxicological studies (safety profile) conducted on the amazing plant A. conyzoides L. are discussed for the possible clinical development of this medicinal herb. Articles available from 2000 to 2020 were reviewed in detail to exhibit recent appraisals of the antifungal properties of A. conyzoides. Efforts were aimed at delivering evidences for the medicinal application of A. conyzoides by using globally recognized scientific search engines and databases so that an efficient approach for filling the lacunae in the research and development of antifungal drugs can be adopted. After analyzing the literature, it can be reported that the selected medicinal plant effectively suppressed the growth of numerous fungal species, such as Aspergillus, Alternaria, Candida, Fusarium, Phytophthora, and Pythium, owing to the presence of various secondary metabolites, particularly chromenes, terpenoids, flavonoids and coumarins. The possible mechanism of action of different secondary metabolites of the plant against fungal pathogens is also discussed briefly. However, it was found that only a few studies have been performed to demonstrate the plant’s dosage and safety profile in humans. Considered all together, A. conyzoides extract and its constituents may act as a promising biosource for the development of effective antifungal formulations for clinical use. However, in order to establish safety and efficacy, additional scientific research is required to explore chronic toxicological effects of ageratum, to determine the probability of interactions when used with different herbs, and to identify safe dosage. The particulars presented here not only bridge this gap but also furnish future research strategies for the investigators in microbiology, ethno-pharmacology, and drug discovery.  相似文献   
7.
    
Fungi have become an invaluable source of bioactive natural products, with more than 5 million species of fungi spanning the globe. Fractionation of crude extract of Neodidymelliopsis sp., led to the isolation of a novel polyketide, (2Z)-cillifuranone (1) and five previously reported natural products, (2E)-cillifuranone (2), taiwapyrone (3), xylariolide D (4), pachybasin (5), and N-(5-hydroxypentyl)acetamide (6). It was discovered that (2Z)-cillifuranone (1) was particularly sensitive to ambient temperature and light resulting in isomerisation to (2E)-cillifuranone (2). Structure elucidation of all the natural products were conducted by NMR spectroscopic techniques. The antimicrobial activity of 2, 3, and 5 were evaluated against a variety of bacterial and fungal pathogens. A sodium [1-13C] acetate labelling study was conducted on Neodidymelliopsis sp. and confirmed that pachybasin is biosynthesised through the acetate polyketide pathway.  相似文献   
8.
Higher plants are different from animals in many aspects, but the important difference may be that plants are more easily influenced by environment. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. The relationship between higher plants and environment is influenced mutually. The component in environment provides higher plants with nutrients for shaping themselves and higher plants simultaneously bring photosynthetic products and metabolites to surroundings, which is the most important part of natural circle. Photosynthetic products are realized mainly by physiological mechanisms, and microbiological aspects in environment (for instance, soil environment) impact the above processes greatly. The complete understanding of the relationship will extremely promote the sustainable utilization of plant resources and make the best use of its current potential under different scales.  相似文献   
9.
    
《Natural product research》2012,26(3):199-205
Abstract

Tyrosol and five bioactive diketopiperazines, cyclo-(L-prolyl-L-glycine), cyclo-(L-prolyl-L-valine), cyclo-(L-leucyl-L-proline), cyclo-(L-tirosil-L-proline) and cyclo-(L-alanil-L-proline) were isolated from the phytopathogenic fungus Pestalotia palmarum.  相似文献   
10.
    
While type II polyketide synthases (PKSs) are known for producing aromatic compounds, a phylogenetically new subfamily of type II PKSs have been recently proposed to synthesize polyene structures. Here we report in vitro analysis of such a type II PKS, IgaPKS for ishigamide biosynthesis. The ketoreductase (Iga13) and dehydratase (Iga16) were shown to catalyze the reduction of a β‐keto group and dehydration of a β‐hydroxy group, respectively, to form a trans double bond. Incubation of the acyl carrier protein (Iga10), the ketosynthase/chain length factor complex (Iga11–Iga12), Iga13 and Iga16 with malonyl and hexanoyl‐CoAs and NADPH followed by KOH hydrolysis resulted in the formation of four unsaturated carboxylic acids (C8, C10, C12, and C14), indicating that IgaPKS catalyzes tetraene formation by repeating the cycle of condensation, keto‐reduction and dehydration with strict stereo‐specificity. We propose “highly reducing type II PKS subfamily” for the polyene‐producing type II PKSs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号