首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15369篇
  免费   2751篇
  国内免费   3293篇
化学   13213篇
晶体学   90篇
力学   327篇
综合类   128篇
数学   3862篇
物理学   3793篇
  2024年   58篇
  2023年   248篇
  2022年   460篇
  2021年   561篇
  2020年   748篇
  2019年   735篇
  2018年   544篇
  2017年   666篇
  2016年   994篇
  2015年   942篇
  2014年   1100篇
  2013年   1542篇
  2012年   1249篇
  2011年   1226篇
  2010年   1007篇
  2009年   1206篇
  2008年   1173篇
  2007年   1195篇
  2006年   1039篇
  2005年   835篇
  2004年   704篇
  2003年   631篇
  2002年   395篇
  2001年   327篇
  2000年   312篇
  1999年   253篇
  1998年   194篇
  1997年   214篇
  1996年   148篇
  1995年   126篇
  1994年   95篇
  1993年   68篇
  1992年   72篇
  1991年   51篇
  1990年   43篇
  1989年   35篇
  1988年   27篇
  1987年   24篇
  1986年   16篇
  1985年   22篇
  1984年   16篇
  1983年   10篇
  1982年   20篇
  1981年   10篇
  1980年   16篇
  1979年   8篇
  1978年   16篇
  1977年   8篇
  1976年   8篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
981.
Two tri(benzo[b]thiopheno)subporphyrazine regioisomers with C3 and C1 molecular symmetry have been isolated from the cyclotrimerization of benzo[b]thiophene‐2,3‐dicarbonitrile as the first five‐membered‐heterocycle‐fused subphthalocyanine analogues. Optical resolution of both regioisomers was achieved by using a chiral HPLC technique, affording the first chiral subphthalocyanine analogues.  相似文献   
982.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   
983.
Two literature‐known TIPS‐ethynyl‐dibromoacenes were prepared and employed to synthesize cyclotrimers by using Yamamoto coupling conditions. Two large, well‐soluble starphenes were isolated in good yields. Crystallographic characterization verifies the triangular shape and shows significant differences in crystal packing.  相似文献   
984.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   
985.
986.
Following our previous mechanistic studies of multicomponent Ugi‐type reactions, theoretical calculations have been performed to predict the efficiency of new substrates in Ugi–Smiles couplings. First, as predicted, 2,4,6‐trichlorophenol experimentally gave the corresponding aryl‐imidate. Theoretical predictions of nitrosophenols as good acidic partners were then successfully confirmed by experiments. In the latter case, the reaction offers a new access to benzimidazoles.  相似文献   
987.
Monoamine 1 , diamines 2 – 4 , triamine 5 , and tetraamine 6 have been synthesized by substituting dianisylamino groups at the 1‐, 3‐, 6‐, and/or 8‐positions of pyrene. Diamines 2 – 4 differ in the positions of the amine substituents. No pyrene–pyrene interactions are evident in the single‐crystal packing of 3 , 4 , and 6 . With increasing numbers of amine substituents, the first oxidation potential decreases progressively from the mono‐ to the tetraamine. These compounds show intense charge‐transfer (CT) emission in CH2Cl2 at around 530 nm with quantum yields of 48–68 %. Upon stepwise oxidation by electrolysis or chemical oxidation, these compounds were transformed into radical cations 1 ?+– 6 ?+ and dications 2 2+– 6 2+, which feature strong visible and near‐infrared absorptions. Time‐dependent density functional theory studies suggested the presence of localized transitions from the pyrene radical cation and aminium radical cation, intervalence CT, and CT between the pyrene and amine moieties. Spectroscopic studies indicated that these radical cations and dications have good stability. Triamine 5 and tetraamine 6 formed efficient CT complexes with tetracyanoquinodimethane in solution. The results of EPR spectroscopy and density functional theory calculations suggested that the dications 2 2+– 4 2+ have a triplet ground state, whereas 5 2+ and 6 2+ have a singlet ground state. The dication of 1,3‐disubstituted diamine 4 exhibits a strong EPR signal.  相似文献   
988.
The influence of nuclear delocalisation on NMR chemical shifts in molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory calculations of shielding tensors. Nuclear quantum effects are shown to explain previously observed systematic deviations in correlations between calculated and experimental chemical shifts, with particularly large PIMD‐induced changes (up to 23 ppm) observed for carbon atoms in methyl groups. The PIMD approach also enables isotope substitution effects on chemical shifts and J couplings to be predicted in excellent agreement with experiment for both isolated molecules and molecular crystals. An approach based on convoluting calculated shielding or coupling surfaces with probability distributions of selected bond distances and valence angles obtained from PIMD simulations is used to calculate isotope effects.  相似文献   
989.
Metal carbide species have been proposed as a new type of chemical entity to activate methane in both gas‐phase and condensed‐phase studies. Herein, methane activation by the diatomic cation MoC+ is presented. MoC+ ions have been prepared and mass‐selected by a quadrupole mass filter and then allowed to interact with methane in a hexapole reaction cell. The reactant and product ions have been detected by a reflectron time‐of‐flight mass spectrometer. Bare metal Mo+ and MoC2H2+ ions have been observed as products, suggesting the occurrence of ethylene elimination and dehydrogenation reactions. The branching ratio of the C2H4 elimination channel is much larger than that of the dehydrogenation channel. Density functional theory calculations have been performed to explore in detail the mechanism of the reaction of MoC+ with CH4. The computed results indicate that the ethylene elimination process involves the occurrence of spin conversions in the C?C coupling (doublet→quartet) and hydrogen atom transfer (quartet→sextet) steps. The carbon atom in MoC+ plays a key role in methane activation because it becomes sp3 hybridized in the initial stages of the ethylene elimination reaction, which leads to much lower energy barriers and more stable intermediates. This study provides insights into the C?H bond activation and C?C coupling involved in methane transformation over molybdenum carbide‐based catalysts.  相似文献   
990.
Our aim is to understand the electronic and steric factors that determine the activity and selectivity of transition‐metal catalysts for cross‐coupling reactions. To this end, we have used the activation strain model to quantum‐chemically analyze the activity of catalyst complexes d10‐M(L)n toward methane C?H oxidative addition. We studied the effect of varying the metal center M along the nine d10 metal centers of Groups 9, 10, and 11 (M=Co?, Rh?, Ir?, Ni, Pd, Pt, Cu+, Ag+, Au+), and, for completeness, included variation from uncoordinated to mono‐ to bisligated systems (n=0, 1, 2), for the ligands L=NH3, PH3, and CO. Three concepts emerge from our activation strain analyses: 1) bite‐angle flexibility, 2) d‐regime catalysts, and 3) s‐regime catalysts. These concepts reveal new ways of tuning a catalyst’s activity. Interestingly, the flexibility of a catalyst complex, that is, its ability to adopt a bent L‐M‐L geometry, is shown to be decisive for its activity, not the bite angle as such. Furthermore, the effect of ligands on the catalyst’s activity is totally different, sometimes even opposite, depending on the electronic regime (d or s) of the d10‐M(L)n complex. Our findings therefore constitute new tools for a more rational design of catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号