首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   971篇
  免费   194篇
  国内免费   31篇
化学   1123篇
晶体学   3篇
力学   1篇
综合类   1篇
物理学   68篇
  2023年   7篇
  2022年   2篇
  2021年   18篇
  2020年   32篇
  2019年   29篇
  2018年   22篇
  2017年   22篇
  2016年   60篇
  2015年   63篇
  2014年   66篇
  2013年   92篇
  2012年   75篇
  2011年   71篇
  2010年   52篇
  2009年   73篇
  2008年   66篇
  2007年   65篇
  2006年   56篇
  2005年   71篇
  2004年   46篇
  2003年   52篇
  2002年   25篇
  2001年   21篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   25篇
  1996年   18篇
  1995年   26篇
  1994年   7篇
  1993年   3篇
  1992年   2篇
排序方式: 共有1196条查询结果,搜索用时 281 毫秒
991.
Cost‐effective, solution‐processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon‐based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long‐term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM‐based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability.  相似文献   
992.
A supramolecular crystallization‐based approach has been developed for the shape‐dependent separation of geometrical isomers under near‐ambient conditions. Difficulties to separate such isomers arise because of their very similar physical properties. The present approach relies on the ability of C60 to preferentially form solvate crystals with molecules of a specific geometry. Subsequently, these molecules are released upon mild heating to regenerate pure C60. By taking isomers of xylene and trimethylbenzene (TMB) as examples, we show that one of the isomers can be extracted from the rest with very high purity. To separate TMB isomers, a new C60–1,3,5‐TMB solvate was developed, which led to the isolation of isomer purities greater than 99.6 %. Versatility, a low operating temperature of approximately 100 °C, a separation efficiency of more than 10 weight % of C60 per cycle, and reagent recyclability makes this a promising molecular shape‐sorting approach.  相似文献   
993.
A comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small‐molecule acceptor in an organic photovoltaic device is presented. The small‐molecule planar acceptor is 2‐[{7‐(9,9‐di‐n‐propyl‐9H‐fluoren‐2‐yl)benzo[c][1,2,5]thiadiazol‐4‐yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge‐carrier generation and transport in blends of PC61BM or K12 with poly(3‐n‐hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time‐resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron‐transport properties in the mixed P3HT:K12 phase. We propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three‐dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub‐percolating volume fraction of the planar acceptor. Furthermore, the planar K12 co‐assembles with P3HT into a disordered, glassy phase that partly accounts for the poor electron‐transport properties, and may also enhance recombination due to the strong intermolecular interactions between the donor and the acceptor. The implication for the performance of organic photovoltaic devices with the two acceptors is also discussed.  相似文献   
994.
The first experimental evidence that fullerenes react with alkali‐metal trichloroacetates through a nucleophilic addition‐substitution route, yielding dichloromethylenefullerenes as the final products, is reported. The intermediates, C60(CCl3)? and C70(CCl3)? anions, have been isolated in their protonated forms as ortho‐C60(CCl3)H, as well as three ortho and one para isomer of C70(CCl3)H. The structures were unambiguously determined by means of 1H, 13C, and 1H–13C HMBC NMR spectroscopy along with UV/Vis spectroscopy. The observed regiochemistry was analyzed with the aid of quantum chemical calculations. Conversion of the protonated compounds into the [6,6]‐closed C60/70(CCl2) cycloadducts under basic conditions can be effected only for the ortho isomers, whereas para‐C70(CCl3)H decomposes back into pristine C70.  相似文献   
995.
Chlorination of C100 fullerene with a mixture of VCl4 and SbCl5 afforded C96Cl20 with a strongly unconventional structure. In contrast to the classical fullerenes containing only hexagonal and pentagonal rings, the C96 cage contains three heptagonal rings and, therefore, should be classified as a fullerene with a nonclassical cage (NCC). There are several types of pentagon fusions in the C96 cage including pentagon pairs and pentagon triples. The three‐step pathway from isolated‐pentagon‐rule (IPR) C100 to C96(NCC‐3hp) includes two C2 losses, which create two cage heptagons, and one Stone–Wales rotation under formation of the third heptagon. Structural reconstruction established C100 isomer no. 18 from 450 topologically possible IPR isomers as the starting C100 fullerene. Until now, no pristine C100 isomers have been confirmed based on the experimental results.  相似文献   
996.
Fullerene derivatives with different addition patterns exhibit different physical, chemical, and biological properties, which are important for fullerene applications. Novel and rare 1,2,3,16‐functionalized [60]fullerene derivatives having a five‐membered heterocycle fused to a [5,6]‐junction were obtained with high regioselectivity by electrochemical derivatization of a [60]fulleroindoline. The product structures were determined by spectroscopic data and single‐crystal X‐ray analysis. The obtained high regioselectivity was rationalized using theoretical calculations.  相似文献   
997.
Poly(trifluoromethyl)fullerene S6‐C60(CF3)12 was reduced by sodium fluorenone ketyl in the presence of (PPN)Cl (PPN=bis(triphenylphosphine)iminium) to afford the salt (PPN)[C60(CF3)12] ( 1 ), which contains C60(CF3)12.? radical anions. In the crystal structure of 1 , C60(CF3)12.? layers alternate with the PPN+ cations. There are short F ??? F contacts between C60(CF3)12.? radical anions within the layers but no C ??? C contacts. DFT calculations revealed that the negative charge on C60(CF3)12.? is distributed mainly between sp2 carbon and fluorine atoms, whereas spin density is localized mainly on the fullerene‐cage sp2 carbon atoms. IR and UV/Vis/NIR spectra in the solid state and solution showed characteristic changes relative to those of neutral S6‐C60(CF3)12 due to the formation of radical anions. The solid‐state electronic spectrum of 1 exhibits a single broad band at 738 nm attributed to C60(CF3)12.?. Crystals of 1 show a narrow EPR signal with g=2.0025 (ΔH=0.45 mT) at 300 K. The temperature dependence of the integral intensity follows the Curie–Weiss law with a negative Weiss temperature of ?11.8 K (30–300 K) indicating antiferromagnetic interaction of spins. This dependence was approximated by the Heisenberg model for one‐dimensional chains of antiferromagnetically interacting spins with exchange interaction J/kB=?9.1 K. It was assumed that magnetic interaction between the C60(CF3)12.? spins in the layers is mediated by short F ??? F contacts.  相似文献   
998.
A series of novel functionalised dumbbell‐shaped bifullerenes in which two [5.0] pentakis‐adducts of C60 are covalently connected by cyclic bismalonates were synthesised. These dimeric compounds, carrying various combinations of hydrophilic and hydrophobic addends, self‐assemble in aqueous solution towards supramolecular architectures of different structural complexity as observed by cryogenic transmission electron microscopy (cryo‐TEM). The detailed analysis of the image data revealed an unprecedented hierarchical aggregation behaviour. Whereas completely hydrophilic substituted bifullerenes formed profoundly monodisperse populations of small oligomeric elementary micelles consisting of only three or four bifullerene molecules in a supposedly bent conformation, their amphiphilic equivalents underwent a hierarchical two‐step assembly process towards larger spherical and even rod‐like structures. The data suggest that the hierarchical assembly process is driven by hydrophobic interactions of preformed tetrameric elementary micelles.  相似文献   
999.
[11]Cycloparaphenylene ([11]CPP) selectively encapsulates La@C82 to form the shortest possible metallofullerene–carbon nanotube (CNT) peapod, La@C82?[11]CPP, in solution and in the solid state. Complexation in solution was affected by the polarity of the solvent and was 16 times stronger in the polar solvent nitrobenzene than in the nonpolar solvent 1,2‐dichlorobenzene. Electrochemical analysis revealed that the redox potentials of La@C82 were negatively shifted upon complexation from free La@C82. Furthermore, the shifts in the redox potentials increased with polarity of the solvent. These results are consistent with formation of a polar complex, (La@C82)δ??[11]CPPδ+, by partial electron transfer from [11]CPP to La@C82. This is the first observation of such an electronic interaction between a fullerene pea and CPP pod. Theoretical calculations also supported partial charge transfer (0.07) from [11]CPP to La@C82. The structure of the complex was unambiguously determined by X‐ray crystallographic analysis, which showed the La atom inside the C82 near the periphery of the [11]CPP. The dipole moment of La@C82 was projected toward the CPP pea, nearly perpendicular to the CPP axis. The position of the La atom and the direction of the dipole moment in La@C82?[11]CPP were significantly different from those observed in La@C82?CNT, thus indicating a difference in orientation of the fullerene peas between fullerene–CPP and fullerene–CNT peapods. These results highlight the importance of pea–pea interactions in determining the orientation of the metallofullerene in metallofullerene–CNT peapods.  相似文献   
1000.
A multimodular donor–acceptor tetrad featuring a bis(zinc porphyrin)–(zinc phthalocyanine) ((ZnP–ZnP)–ZnPc) triad and bis‐pyridine‐functionalized fullerene was assembled by a “two‐point” binding strategy, and investigated as a charge‐separating photosynthetic antenna‐reaction center mimic. The spectral and computational studies suggested that the mode of binding of the bis‐pyridine‐functionalized fullerene involves either one of the zinc porphyrin and zinc phthalocyanine (Pc) entities of the triad or both zinc porphyrin entities leaving ZnPc unbound. The binding constant evaluated by constructing a Benesi–Hildebrand plot by using the optical data was found to be 1.17×105 M ?1, whereas a plot of “mole‐ratio” method revealed a 1:1 stoichiometry for the supramolecular tetrad. The mode of binding was further supported by differential pulse voltammetry studies, in which redox modulation of both zinc porphyrin and zinc phthalocyanine entities was observed. The geometry of the tetrad was deduced by B3LYP/6‐31G* optimization, whereas the energy levels for different photochemical events was established by using data from the optical absorption and emission, and electrochemical studies. Excitation of the zinc porphyrin entity of the triad and tetrad revealed ultrafast singlet–singlet energy transfer to the appended zinc phthalocyanine. The estimated rate of energy transfer (kENT) in the case of the triad was found to be 7.5×1011 s?1 in toluene and 6.3×1011 s?1 in o‐dichlorobenzene, respectively. As was predicted from the energy levels, photoinduced electron transfer from the energy‐transfer product, that is, singlet‐excited zinc phthalocyanine to fullerene was verified from the femtosecond‐transient spectral studies, both in o‐dichlorobenzene and toluene. Transient bands corresponding to ZnPc ? + in the 850 nm range and C60 ? ? in the 1020 nm range were clearly observed. The rate of charge separation, kCS, and rate of charge recombination, kCR, for the (ZnP–ZnP)–ZnPc ? +:Py2C60 ? ? radical ion pair (from the time profile of 849 nm peak) were found to be 2.20×1011 and 6.10×108 s?1 in toluene, and 6.82×1011 and 1.20×109 s?1 in o‐dichlorobenzene, respectively. These results revealed efficient energy transfer followed by charge separation in the newly assembled supramolecular tetrad.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号