首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   67篇
  国内免费   77篇
化学   645篇
晶体学   5篇
力学   2篇
物理学   42篇
  2023年   8篇
  2022年   20篇
  2021年   21篇
  2020年   29篇
  2019年   26篇
  2018年   19篇
  2017年   29篇
  2016年   40篇
  2015年   20篇
  2014年   12篇
  2013年   67篇
  2012年   34篇
  2011年   36篇
  2010年   28篇
  2009年   24篇
  2008年   34篇
  2007年   35篇
  2006年   35篇
  2005年   23篇
  2004年   28篇
  2003年   24篇
  2002年   24篇
  2001年   12篇
  2000年   14篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1990年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有694条查询结果,搜索用时 15 毫秒
61.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   
62.
63.
检测维生素C的囊泡荧光传感器的制备   总被引:1,自引:0,他引:1  
利用合成的含有识别基团苯硼酸和荧光读出基团萘的新型双亲化合物(DNMPBA)在THF/水选择性溶剂中自组织成囊泡,囊泡的相变温度为56.8℃;当向囊泡体系加维生素C时,DNMPBA囊泡中的萘生色基在345nm的荧光峰强度急剧减弱.荧光强度减弱归于所形成的硼酸酯增强了DNMPBA双亲化合物中一个氧原子孤对电子对萘生色基的淬灭作用.DNMPBA囊泡与维生素C的相互作用而导致体系荧光强度变化,使该体系有可能应用于检测生物物质如维生素C的化学传感器.  相似文献   
64.
利用合成的含有识别基团苯硼酸和荧光读出基团喹啉的新型双亲化合物对硼酸苯甲基-8-十六烷氧基溴化喹啉(BHQB)在水中自组织成囊泡,囊泡的相变温度为52.4℃;当向囊泡体系加糖时,BHQB囊泡中的喹啉生色基在508nm的荧光峰强度急剧减弱,425nm处荧光逐渐增强.荧光强度变化可能归于所形成的硼酸酯改变了双亲化合物中硼原子的杂化轨道形式,进一步引起了整个分子内部的电子云排布所致.BHQB囊泡与糖的相互作用而导致体系荧光强度变化,并且这种变化的幅度与加入糖的种类和量均有关.因此体系有可能应用于检测生物物质如糖的化学传感器.  相似文献   
65.
We have fabricated novel nanofibrous fluorinated polyimide membranes on a specially designed collector, which is composed of conductive aluminum plates and glass insulator materials and can be removed from the apparatus, using an electrospinning method. We describe the structure and water flux properties of the nanofibrous fluorinated polyimide membranes. The electrospun nanofibers were deposited across the plates and uniaxially aligned to the collector. In addition, the multi‐layer stacked nanofibrous membranes, consisting of three‐dimensionally ordered nanopores, were produced. The pure water fluxes for the stacked membranes were measured, using a stirred dead‐end filtration cell, and were linearly decreased with an increasing deposition time, indicating that the nanopores formed in the nanofibrous membrane were further narrowed due to the regularly accumulated nanofibers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
66.
In this work, fluorinated nonamphiphilic gradient copolymers of tert‐butyl acrylate (tBA) and 2,2,3,3,4,4,4‐heptafluorobutyl methacrylate (HFBMA) [poly(tBA‐grad‐HFBMA)] were first synthesized by semibatch atom transfer radical copolymerization of tBA and HFBMA. Their hydrolysis at acidic conditions led to amphiphilic poly(acrylic acid‐grad‐HFBMA). The chemical compositions and structures of these copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. Their surface properties were evaluated with water contact angle measurement and x‐ray photoelectron spectroscopy. The micellization behaviors of amphiphilic copolymer were also studied by transmission electron microscopy and dynamic light scattering. The results showed that the fluorinated and amphiphilic gradient copolymers could self‐assemble in a dilute solution to form aggregates of morphologies. Furthermore, the effect of pH on the aggregates was investigated to verify that the resulting gradient copolymers were to some extent pH sensitive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
67.
A reddish‐brown fluoroalkyl end‐capped 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) oligomer/acetone composite was prepared by heating the white oligomer powder with acetone at 80 °C for 3 h. The color was not observed in the corresponding non‐fluorinated AMPS oligomer/acetone composite, which was prepared under similar conditions. The coloring was probably caused by the formation of acetone polyaldol condensation products in the fluorinated oligomeric gel network cores. The colored RF‐(AMPS)n‐RF/acetone composite powders were stable and did not exhibit any color change after 2 years in natural light at room temperature. The colored composite powders dissolved in methanol to give a reddish‐brown solution at room temperature. However, the retro‐polyaldol condensation decolored the solution after 1 day at room temperature. This is the first example of the retro‐aldol polycondensation of acetone under mild conditions. The decoloration increased by between 38‐ and 70‐fold under UV irradiation, compared with that in dark conditions. The coloring–decoloring behavior was consistent and repeatable; therefore our fluorinated oligomer/acetone composites are promising candidates for new fluorinated coloring materials. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2555–2564  相似文献   
68.
2,3,4,5,6‐Pentafluoro and 4‐trifluoromethyl 2,3,5,6‐tetrafluoro styrenes were readily copolymerized with methyl methacrylate (MMA) by a free radical initiator. The copolymers were soluble in tetrahydrofuran and acetone. The films obtained were transparent and flexible. The glass transition temperatures (Tgs) of the copolymers were found positively deviated from the Gordon–Taylor equation. The positive deviation could be accounted for by dipole–dipole intrachain interaction between the methyl ester group of MMA and the highly fluorinated aromatic moiety, which resulted in a decrease in the segmental mobility of the polymer chains and the enhanced Tg values of the copolymers. The water absorption of PMMA was greatly decreased by copolymerization of MMA with the highly fluorinated styrenes. With as little as 10 mol % of pentafluoro styrene content in the copolymer, the water absorption was decreased to one‐third of that for pure PMMA. The fluorinated styrenes‐MMA copolymers were thermally stable up to 420 °C under air and nitrogen atmospheres. With 50 mol % of MMA in the copolymer, the copolymer was still stable up to 350 °C. Since these copolymers contain a large number of fluorine atoms, the light absorption in the region of the visible to near infrared is decreased in comparison with nonfluorinated polymers. Thus, these copolymers may be suitable for application in optical devices, such as optical fibers and waveguides. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
69.
A new and straightforward method has been studied to prepare crosslinked low surface energy semiconductive epoxy coatings. The low surface energy is obtained by adding a small amount of partially fluorinated bifunctional primary amine Jeffamine D230 crosslinker and the conductivity is achieved by adding a small amount of semiconductive nanosized Cobalt(III) phthalocyanine particles. The use of partially fluorinated crosslinker strongly influences the conductivity, the conductive particle network structure, and the network distribution in the coatings. Compared to coatings that are free of fluorine, variations in fractal dimension, percolation threshold, particle‐containing layer thickness, and conductivity level are observed as the amount of fluorinated species is varied. These differences can be explained by (local) differences in effective Hamaker constant, viscosity, curing rate, evaporation of the solvent, and presence or absence of polymer matrix between the particles in the network. Our results suggest that other crosslinked semiconductive low surface energy epoxy coatings can be realized in a similar manner, but careful optimization of processing conditions is required to obtain the desired conductivity levels at low filler concentration. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Chem 47: 366–380, 2009  相似文献   
70.
Intrinsic structural features and energetics of nucleotides containing variously fluorinated sugars as potential building blocks of DNA duplexes and quadruplexes are explored systematically using the modern methods of density functional theory (DFT) and quantum chemical topology (QCT). Our results suggest that fluorination at the 2′‐β or 2′‐α,β positions somewhat stabilizes in vacuo the AI relative to the BI conformations. In contrast, substitution of the CF2 group for the O4′ atom (O4′‐CF2 modification) leads to a preference of the BI relative to AI DNA‐like conformers. All the studied modifications result in a noticeable increase in the stability of the glycosidic bond [estimated by the relaxed force constants (RFC) approach], with particularly encouraging results for the O4′‐CF2 derivative. Consequently, the O4′‐CF2 modified systems are suggested and explored as promising scaffolds for the development of duplex and quadruplex structures with reduced propensity to form abasic lesions and to undergo DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号