首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3143篇
  免费   320篇
  国内免费   362篇
化学   1891篇
晶体学   22篇
力学   314篇
综合类   24篇
数学   127篇
物理学   1447篇
  2024年   7篇
  2023年   33篇
  2022年   72篇
  2021年   60篇
  2020年   68篇
  2019年   89篇
  2018年   85篇
  2017年   112篇
  2016年   118篇
  2015年   101篇
  2014年   141篇
  2013年   275篇
  2012年   132篇
  2011年   194篇
  2010年   151篇
  2009年   190篇
  2008年   185篇
  2007年   192篇
  2006年   200篇
  2005年   192篇
  2004年   142篇
  2003年   124篇
  2002年   114篇
  2001年   106篇
  2000年   104篇
  1999年   101篇
  1998年   73篇
  1997年   90篇
  1996年   63篇
  1995年   59篇
  1994年   49篇
  1993年   38篇
  1992年   18篇
  1991年   27篇
  1990年   13篇
  1989年   10篇
  1988年   9篇
  1987年   12篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   12篇
  1981年   10篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
排序方式: 共有3825条查询结果,搜索用时 46 毫秒
191.
We use the T-matrix method to compute the scattering matrix for randomly oriented circular ice cylinders with diameter-to-length ratios 1 and 20 and surface-equivalent-sphere size parameters up to 12. We show that wavelength-sized, sharp-edged ice plates with extreme diameter-to-length ratios possess the same scattering properties as smooth platelike spheroids: their phase functions are similar to those of surface-equivalent compact particles, whereas all other elements of the scattering matrix are typical of Rayleigh scattering.  相似文献   
192.
We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.  相似文献   
193.
Self-organised Ge dot superlattices grown by molecular beam epitaxy of Ge and Si layers utilizing Stranski-Krastanov growth mode were investigated by Raman spectroscopy. An average size of Ge quantum dots was obtained from transmission electron microscopy measurements. The strain and interdiffusion of Ge and Si atoms in Ge quantum dots were estimated from the analysis of frequency positions of optical phonons observed in the Raman spectra. Raman scattering by folded longitudinal acoustic phonons in the Ge dot superlattices was observed and explained using of elastic continuum theory. Received 25 January 2000  相似文献   
194.
Poly(ethylene terephthalate) (PET) has been mixed with fluorite (CaF2) particles to obtain micro- and nano-composites aiming to obtain a hybrid multifilament. In first term, the use of two montanic waxes and an amide wax as dispersing agents towards the compatibilization of the inorganic and organic components of the CaF2/PET composite were considered. To do this, non-isothermal crystallization studies by differential scanning calorimetry have been carried out. Moreover, the influence of the CaF2 particle size and concentration on the thermal properties of the system have been also studied by this technique. Finally, the extrapolation of the results has materialised as a novel PET/CaF2 hybrid multifilament. Thermal and mechanical properties and molecular weight of the multifilament have been as well evaluated.  相似文献   
195.
In this work, thiocarbohydrazide doped iron nanoparticles as a novel, green, heterogeneous, and inexpensive catalyst is reported. This catalyzed the three components reaction of dialkylacetylenedicarboxylate with aromatic aldehydes and aromatic amines to yield the corresponding furan derivatives EtOH. An indispensable part of green chemistry is to be able to recover and reuse catalysts without any notable drop in catalytic activity. The analysis of catalyst and application of that for the synthesis of title compounds in high yields reveal this property. The formation, size of the metal ions present in the material is confirmed by powdered X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA).  相似文献   
196.
Recent mathematical investigations have shown that under very general conditions, exponential mixing implies the Bernoulli property. As a concrete example of statistical mechanics that are exponentially mixing we consider the Bernoulli shift dynamics by Chebyshev maps of arbitrary order N2, which maximizes Tsallis q=3 entropy rather than the ordinary q=1 Boltzmann-Gibbs entropy. Such an information shift dynamics may be relevant in a pre-universe before ordinary space-time is created. We discuss symmetry properties of the coupled Chebyshev systems, which are different for even and odd N. We show that the value of the fine structure constant αel=1/137 is distinguished as a coupling constant in this context, leading to uncorrelated behaviour in the spatial direction of the corresponding coupled map lattice for N=3.  相似文献   
197.
Efficient generation of polarized single photons or entangled photon pairs is crucial for the implementation of quantum key distribution (QKD) systems. Self organized semiconductor quantum dots (QDs) are capable of emitting on demand one polarized photon or an entangled photon pair upon current injection. Highly efficient single‐photon sources consist of a pin structure inserted into a microcavity where single electrons and holes are funneled into an InAs QD via a submicron AlOx aperture, leading to emission of single polarized photons with record purity of the spectrum and non‐classicality of the photons. A new QD site‐control technique is based on using the surface strain field of an AlOx current aperture below the QD. GaN/AlN QD based devices are promising to operate at room temperature and reveal a fine‐structure splitting (FSS) depending inversely on the QD size. Large GaN/AlN QDs show disappearance of the FSS. Theory also suggests QDs grown on (111)‐oriented GaAs substrates as source of entangled photon pairs.  相似文献   
198.
When a colloidal suspension is exposed to a strong rotating electric field, an aggregation of the suspended particles is induced to appear. In such clusters, the separation between the suspended particles is so close that one could not neglect the multiple image effect on the electrorotation (ER) spectrum. Since so far the exact multiple image method exists in two dimensions only, rather than in three dimensions, we investigate the ER spectrum of the clustered colloidal particles in two dimensions, in which many cylindrical particles are randomly distributed in a sheet cluster. We report the dependence of the ER spectrum on the material parameters. It is shown that the multiple image method predicts two characteristic frequencies, at which the rotation speed reaches maximum. To this end, the multiple image method is numerically demonstrated to be in good agreement with the known Maxwell-Garnett approximation.  相似文献   
199.
With the rapid development of communication technology in civil and military fields, the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle material with superior magnetic properties, high Snoek’s cut-off frequency, saturation magnetization and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promising absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of morphological structure design and multi-component material composite are utilized to improve the microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave absorbing materials have been widely studied in microwave absorption. In this review, through the summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing properties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future development direction of Fe-based absorbing materials is also prospected, providing a reference for the research and development of efficient electromagnetic wave absorbing materials with strong absorption performance, frequency bandwidth, light weight and thin thickness.  相似文献   
200.
In this contribution, we present a review of our recent works about the design of phosphor nanoparticles and materials based on [Mo6X14]2− cluster units (X = Cl, Br, I) as well as the functionalization of monocrystalline Si(111) surfaces by Mo6 clusters. Our purpose was to use the specific properties of cluster units found in inorganic solids for the design of new nanomaterials with potential applications in nanotechnologies (e.g. phosphor dyes for bio labelling, light emitting diodes, redox active molecular junctions…) using soft chemistry techniques. Phosphor Cs2Mo6X14@SiO2 nanoparticles emitting in 550–900 nm upon photo-excitation were synthesised using a ‘water in oil’ microemulsion technique. They exhibit a regular shape (~45 nm) and are based on [Mo6X14]2− cluster units and Cs+ counter cations embedded in a silica matrix. ((n–C4H9)4N)2Mo6Br14@ZnO colloids and nanopowders are based on the association of ZnO crystalline nano-particles with Mo6 cluster units adsorbed on their surface. They exhibit a large emission window in the visible region that can be tuned by modulation of the excitation wave length in order to selectively obtain the emission of either clusters units or ZnO nanocrystals or of both entities. Functionalized surfaces were obtained by the attachment of cluster units on a Si(111) surface through pyridine end capped organic chains using a multi-step procedure. Modified surfaces were characterized by X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM), IR and electrochemical analysis. The surface coverage can be modulated by the controlled introduction of inert organic chains among pyridine end-capped ones before the cluster anchoring step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号