首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   11篇
  国内免费   13篇
化学   93篇
数学   2篇
物理学   24篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   13篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   1篇
  2016年   4篇
  2015年   11篇
  2014年   4篇
  2013年   24篇
  2012年   8篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1993年   1篇
排序方式: 共有119条查询结果,搜索用时 31 毫秒
51.
目的研究慢性咳嗽患儿呼出气一氧化氮(fractional exhaled nitric oxide ,FeNO)与特应性体质及血清总免疫球蛋白E(TIgE)水平的相关性。方法对91例慢性咳嗽的患儿进行FeNO、血TIgE的检测及变应原皮肤点刺试验并进行分组对比。结果特应性体质组FeNO值为(29.74±14.24)ppb,TIgE为(483.95±384.57)IU/ml,非特应性体质组FeNO值为(13.82±7.91) ppb,TIgE为(154.09±143.42)IU/ml,差异均有统计学意义(均P<0.05)。血清TIgE增高患儿FeNO值为(29.15±15.30)ppb,血清IgE正常患儿FeNO值为(16.22±9.75)ppb,差异有统计学意义(P<0.05)。相关性分析发现FeNO水平与过敏原数目不存在相关(P=0.278)。结论特应性体质可使慢性咳嗽患儿FeNO水平明显升高,而FeNO与皮肤过敏原阳性数目无明显相关性,在诊断哮喘时应注意特应性体质的存在。  相似文献   
52.
利用原子转移自由基聚合(ATRP)方法, 分别在三氟甲苯、含氟离子液体以及三氟甲苯/含氟离子液体混合溶剂体系中合成了聚苯乙烯-co-聚(2,3,4,5,6-五氟苯乙烯)(PS-co-PPFS)共聚物, 通过1H NMR、19F NMR、元素分析以及凝胶渗透色谱法(GPC)对所得聚合物的分子链结构和组成进行了分析和表征. 随后, 利用静态呼吸图法分别在CS2, CHCl3 和CH2Cl2 中制备了有序多孔薄膜, 用扫描电子显微镜(SEM)观察其表面形貌, 并与利用分子量大小相当的聚苯乙烯均聚物(PS)制备的多孔薄膜进行了对比. 研究结果表明: 在三氟甲苯和含氟离子液体溶剂体系中, 均可利用ATRP 聚合方法获得窄分子量分布的PS-co-PPFS 共聚物(Mn=5200~7900 g·mol-1, i>Mw/Mn=1.12~1.22). 对聚合物薄膜的扫描电子显微镜(SEM)观察和分析显示: 分别以CS2, CHCl3 和CH2Cl2 作为溶剂, 利用静态呼吸图法均可制备出PS-co-PPFS 共聚物多孔薄膜. 然而, 与在CHCl3 和CH2Cl2 中制备的PS 均聚物多孔薄膜的表面形貌不同的是, PS-co-PPFS 共聚物多孔薄膜呈现出无序排列、平均孔径大小不同的两种孔结构; 在CHCl3 中制备所得薄膜的孔结构有序性相对较好, 两种孔的平均孔径分别为0.75 和0.37 μm.  相似文献   
53.
白万乔  乔学志  王铁 《电化学》2019,25(2):185-201
细胞新陈代谢的变化会导致挥发性有机化合物(VOCs)类型及含量发生变化,因此可通过分析某些标志性VOCs简立起多种疾病早期诊断的模型. 人体呼出物中特征VOCs的检测作为一种非侵入性、无损的检测手段,近些年在疾病检测领域已成为世界范围内的研究热点. 其中,纳米材料可用于增强传感器性能,并使传感器便携式小型化,推进检测传感器进入临床. 在这篇综述中,作者将种类繁多的传感器中用到的纳米材料归纳总结为金属、金属氧化物、碳基、复合物和MOFs基纳米材料等几类,并讨论了不同类纳米材料在VOCs检测中的优劣势. 本文所建立起的分析方法及讨论有助于进一步了解检测技术的优越性与局限性. 最后,作者对利用VOCs的检测实现癌症早期筛选的研究及发展提出了个人观点.  相似文献   
54.
New antibacterial films are designed with the capability to reversibly regulate their killing and repelling functions in response to variations in environmental pH. These systems consist of porous polystyrene surfaces as the main components and a copolymer bearing pH‐sensitive thiazole and triazole groups as the minor components. These pH‐sensitive groups, located on the surfaces, can be partially protonated at acidic pH levels, increasing the positive charge density of the surfaces and their antibacterial activity. Similarly, their bacterial adhesion and killing efficiencies in response to changes in pH are evaluated by analyzing the bacterial viability of Staphylococcus aureus bacteria on the surfaces under acidic and neutral pH values. It is demonstrated that after only 1 h of incubation with the bacterial suspension in acidic conditions, the surfaces killed the bacteria, while at pH = 7.4, some of the adhered bacteria are removed. Furthermore, the surface topography exerts an important role by intensifying this response.  相似文献   
55.
Increased acceptance of cannabis containing the psychoactive component, Δ9-tetrahydrocannabinol (THC), raises concerns about the potential for impaired drivers and increased highway accidents. In contrast to the “breathalyzer” test, which is generally accepted for determining the alcohol level in a driver, there is no currently accepted roadside test for THC in a motorist. There is a need for an easily collectible biological sample from a potentially impaired driver coupled with an accurate on-site test to measure the presence and quantity of THC in a driver. A novel breath collection device is described, which includes three separate sample collectors for collecting identical A, B, and C breath samples from a subject. A simple one-step ethanol extraction of the “A” breath collector sample can be analyzed by UHPLC/selected ion monitoring (SIM) liquid chromatography/mass spectrometry (LC/MS) to provide qualitative and quantitative determination of THC in breath sample in less than 4 min for samples collected up to 6 h after smoking a cannabis cigarette. SIM LC/MS bioanalyses employed d3-THC as the stable isotope internal standard fortified in negative control breath samples for quantitation including replicates of six calibrator standards and three quality control (QC) samples. Subsequent confirmation of the same breath sample in the B collectors was then confirmed by a reference lab by LC/MS/MS analysis. Fit-for-purpose bioanalytical validation consistent with pharmaceutical regulated bioanalyses produced pharmacokinetic (PK) curves for the two volunteer cannabis smokers. These results produced PK curves, which showed a rapid increase of THC in the breath of the subjects in the first hour followed by reduced THC levels in the later time points. A simpler single-point calibration curve procedure with calibrators and QC prepared in ethanol provided similar results. Limitations to this approach include the higher cost and operator skill sets for the instrumentation employed and the inability to actually determine driver impairment.  相似文献   
56.
导出了在对数饱和非线性介质中传播的强激光基模高斯光束宽度随传播距离变化的方程。此方程与势作用下粒子的运动方程形式一致,因此可用势作用下的粒子行为来描述高斯光束的呼吸模式。对势函数采用二阶近似后,求解此方程得到高斯型呼吸模式的光束宽度的近似解析式。分析了呼吸周期和呼吸深度与入射条件的关系,以及形成空间孤子的条件。  相似文献   
57.
New block copolymers Polystyrene‐b‐poly (2,2,2‐trifluoroethyl acrylate)‐b‐Polystyrene (PS‐PTFEA‐PS) with controlled molecular weight (Mn=5000‐11000 g?mol?1) and narrow molecular weight distribution (Mw/Mn=1.13‐1.17) were synthesized via RAFT polymerization. The molecular structure and component of PS‐PTFEA‐PS block copolymers were characterized through 1H NMR, 19F NMR, GPC, FT‐IR and elemental analysis. The porous films of such copolymers with average pore size of 0.80‐1.34 μm and good regularity were fabricated via a static breath‐figure (BF) process. The effects of solvent, temperature, and polymer concentration on the surface morphology of such film were investigated. In addition, microstructured spheres and fibers of such block copolymers were fabricated by electrospinning process and observed by scanning electron microscopy (SEM). Furthermore, the hydrophobicity of porous films, spheres, and fibers was investigated. The porous film showed a good hydrophobicity with the water‐droplet contact angles of 129°, and the fibers showed higher hydrophobicity with the water‐droplet contact angles of 142°. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 678–685  相似文献   
58.
A new procedure, requiring expired sample volumes of approximately 2L, has been developed for the quantitative determination of n-pentane in human breath. The methodology capitalizes on the superior resolving power and separating efficiency of the open tubular capillary column and incorporates an effective prechromatographic cryofocusing technique. Molecular sieve is used to simultaneously remove moisture and carbon dioxide from breath samples which are “spiked” with an internal standard to optimize the validity of analysis. Reproducible data for both internal standard spiking (CV = 5.8%) and sample n-pentane level (CV = 3.2%) have been obtained, together with a mean recovery of 104%. Preliminary data show n-pentane levels in normal female subjects (n = 10) to range from 0.62 to 3.16 nmole/L (mean 1.76 nmole/L) and in males (n = 10) from 3.20 to 8.76 nmole/L (mean 5.66 nmole/L).  相似文献   
59.
Honeycomb‐structured, porous films with pore sizes ranging from 200 nm to 7 μm were prepared with breath figures. The regularity of the hexagonal array and the pore size was influenced by the polymer architecture and the casting conditions. A nanoscaled suborder next to the microarray was obtained with amphiphilic block copolymers. These films were shown to be suitable as surfaces for cell growth. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2363–2375, 2006  相似文献   
60.
Background: Oxidative stress-induced lipid peroxidation (LPO) due to neutrophil-derived reactive oxygen species plays a key role in the early stage of the acute respiratory distress syndrome (ARDS). Monitoring of oxidative stress in this patient population is of great interest, and, ideally, this can be done noninvasively. Recently, propionaldehyde, a volatile chemical compound (VOC) released during LPO, was identified in the breath of lung transplant recipients as a marker of oxidative stress. The aim of the present study was to identify if markers of oxidative stress appear in the oxygenator outflow gas of patients with severe ARDS treated with veno-venous extracorporeal membrane oxygenation (ECMO). Methods: The present study included patients with severe ARDS treated with veno-venous ECMO. Concentrations of acetone, isoprene, and propionaldehyde were measured in inspiratory air, exhaled breath, and oxygenator inflow and outflow gas at corresponding time points. Ion-molecule reaction mass spectrometry was used to measure VOCs in a sequential order within the first 24 h and on day three after ECMO initiation. Results: Nine patients (5 female, 4 male; age = 42.1 ± 12.2 year) with ARDS and already established ECMO therapy (pre-ECMO PaO2/FiO2 = 44.0 ± 11.5 mmHg) were included into analysis. VOCs appeared in comparable amounts in breath and oxygenator outflow gas (acetone: 838 (422–7632) vs. 1114 (501–4916) ppbv; isoprene: 53.7 (19.5–244) vs. 48.7 (37.9–108) ppbv; propionaldehyde: 53.7 (32.1–82.2) vs. 42.9 (24.8–122) ppbv). Concentrations of acetone, isoprene, and propionaldehyde in breath and oxygenator outflow gas showed a parallel course with time. Conclusions: Acetone, isoprene, and propionaldehyde appear in breath and oxygenator outflow gas in comparable amounts. This allows for the measurement of these VOCs in a critically ill patient population via the ECMO oxygenator outflow gas without the need of ventilator circuit manipulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号