首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12408篇
  免费   1118篇
  国内免费   1007篇
化学   10592篇
晶体学   48篇
力学   991篇
综合类   194篇
数学   708篇
物理学   2000篇
  2024年   38篇
  2023年   163篇
  2022年   448篇
  2021年   459篇
  2020年   536篇
  2019年   442篇
  2018年   427篇
  2017年   448篇
  2016年   631篇
  2015年   525篇
  2014年   567篇
  2013年   1280篇
  2012年   763篇
  2011年   682篇
  2010年   525篇
  2009年   571篇
  2008年   547篇
  2007年   688篇
  2006年   583篇
  2005年   552篇
  2004年   474篇
  2003年   406篇
  2002年   382篇
  2001年   266篇
  2000年   281篇
  1999年   241篇
  1998年   228篇
  1997年   204篇
  1996年   169篇
  1995年   155篇
  1994年   107篇
  1993年   124篇
  1992年   110篇
  1991年   84篇
  1990年   74篇
  1989年   45篇
  1988年   51篇
  1987年   43篇
  1986年   30篇
  1985年   31篇
  1984年   30篇
  1983年   9篇
  1982年   14篇
  1981年   15篇
  1980年   17篇
  1979年   17篇
  1978年   11篇
  1976年   10篇
  1973年   10篇
  1972年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
851.
Cocatalysts have been extensively used to promote water oxidation efficiency in solar‐to‐chemical energy conversion, but the influence of interface compatibility between semiconductor and cocatalyst has been rarely addressed. Here we demonstrate a feasible strategy of interface wettability modification to enhance water oxidation efficiency of the state‐of‐the‐art CoOx/Ta3N5 system. When the hydrophobic feature of a Ta3N5 semiconductor was modulated to a hydrophilic one by in situ or ex situ surface coating with a magnesia nanolayer (2–5 nm), the interfacial contact between the hydrophilic CoOx cocatalyst and the modified hydrophilic Ta3N5 semiconductor was greatly improved. Consequently, the visible‐light‐driven photocatalytic oxygen evolution rate of the resulting CoOx/MgO(in)–Ta3N5 photocatalyst is ca. 23 times that of the pristine Ta3N5 sample, with a new record (11.3 %) of apparent quantum efficiency (AQE) under 500–600 nm illumination.  相似文献   
852.
The splitting of water into hydrogen and oxygen molecules using sunlight is an attractive method for solar energy storage. Until now, photoelectrochemical hydrogen evolution is mostly studied in acidic solutions, in which the hydrogen evolution is more facile than in alkaline solutions. Herein, we report photoelectrochemical hydrogen production in alkaline solutions, which are more favorable than acidic solutions for the complementary oxygen evolution half‐reaction. We show for the first time that amorphous molybdenum sulfide is a highly active hydrogen evolution catalyst in basic medium. The amorphous molybdenum sulfide catalyst and a Ni–Mo catalyst are then deposited on surface‐protected cuprous oxide photocathodes to catalyze sunlight‐driven hydrogen production in 1 M KOH. The photocathodes give photocurrents of ?6.3 mA cm?2 at the reversible hydrogen evolution potential, the highest yet reported for a metal oxide photocathode using an earth‐abundant hydrogen evolution reaction catalyst.  相似文献   
853.
Catalytically active MnOx species have been reported to form in situ from various Mn‐complexes during electrocatalytic and solution‐based water oxidation when employing cerium(IV) ammonium ammonium nitrate (CAN) oxidant as a sacrificial reagent. The full structural characterization of these oxides may be complicated by the presence of support material and lack of a pure bulk phase. For the first time, we show that highly active MnOx catalysts form without supports in situ under photocatalytic conditions. Our most active 4MnOx catalyst (~0.84 mmol O2 mol Mn?1 s?1) forms from a Mn4O4 bearing a metal–organic framework. 4MnOx is characterized by pair distribution function analysis (PDF), Raman spectroscopy, and HR‐TEM as a disordered, layered Mn‐oxide with high surface area (216 m2g?1) and small regions of crystallinity and layer flexibility. In contrast, the SMnOx formed from Mn2+ salt gives an amorphous species of lower surface area (80 m2g?1) and lower activity (~0.15 mmol O2 mol Mn?1 s?1). We compare these catalysts to crystalline hexagonal birnessite, which activates under the same conditions. Full deconvolution of the XPS Mn2p3/2 core levels detects enriched Mn3+ and Mn2+ content on the surfaces, which indicates possible disproportionation/comproportionation surface equilibria.  相似文献   
854.
Redox‐inactive metal ions play important roles in tuning chemical properties of metal–oxygen intermediates. Herein we report the effect of water molecules on the redox properties of a nonheme iron(III)–peroxo complex binding redox‐inactive metal ions. The coordination of two water molecules to a Zn2+ ion in (TMC)FeIII‐(O2)‐Zn(CF3SO3)2 ( 1 ‐Zn2+) decreases the Lewis acidity of the Zn2+ ion, resulting in the decrease of the one‐electron oxidation and reduction potentials of 1 ‐Zn2+. This further changes the reactivities of 1 ‐Zn2+ in oxidation and reduction reactions; no reaction occurred upon addition of an oxidant (e.g., cerium(IV) ammonium nitrate (CAN)) to 1 ‐Zn2+, whereas 1 ‐Zn2+ coordinating two water molecules, (TMC)FeIII‐(O2)‐Zn(CF3SO3)2‐(OH2)2 [ 1 ‐Zn2+‐(OH2)2], releases the O2 unit in the oxidation reaction. In the reduction reactions, 1 ‐Zn2+ was converted to its corresponding iron(IV)–oxo species upon addition of a reductant (e.g., a ferrocene derivative), whereas such a reaction occurred at a much slower rate in the case of 1 ‐Zn2+‐(OH2)2. The present results provide the first biomimetic example showing that water molecules at the active sites of metalloenzymes may participate in tuning the redox properties of metal–oxygen intermediates.  相似文献   
855.
We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low‐surface‐energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water.  相似文献   
856.
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.  相似文献   
857.
In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra‐trace amounts of rhodium after adsorption of its 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015–0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values.  相似文献   
858.
This work reports the preparation of molecularly imprinted polymer particles for the selective extraction and determination of four benzophenones from aqueous media. The polymer was prepared by using 4‐vinylpridine as functional monomer, ethylene glycol dimethacrylate as cross‐linker, acetonitrile as porogenic solvent and 2,2’,4,4’‐tetrehydroxybenzophenone as template. Good specific adsorption capacity (Qmax = 27.90 μmol/g) for 2,2’,4,4’‐tetrehydroxybenzophenone was obtained in the sorption experiment and good class selectivity for 2,2’,4,4’‐tetrehydroxybenzophenone, 2,4‐dihydroxybenzophenone, 2,2’‐dihydroxy‐4‐methoxybenzophenone, 2,2’‐dehydroxy‐4,4’‐dimethoxybenzophenone was demonstrated by the chromatographic evaluation experiment. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were investigated systematically. An accurate and sensitive analytical method based on the molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection has been successfully developed for the simultaneous determination of four benzophenones from tap water and river water with method detection limits of 0.25–0.72 ng/mL. The recoveries of benzophenones for water samples at two spiking levels (500 and 5000 ng/mL for each benzophenone) were in the range of 86.9–103.3% with relative standard deviations (n = 3) below 9.2%.  相似文献   
859.
This paper described the synthesis of copolymer emulsions of fluorine and siloxane‐containing acrylates for water‐repellent cotton fabrics coatings. Chemical composition, morphology structure, and properties of the latex copolymers were investigated by Fourier transform infrared (FTIR), dynamic light scattering (DLS), gel permeation chromatography (GPC), and transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Effects of water‐repellent functional monomers (Rf) on surface morphology, water contact angle, and water‐repellent properties of the coated fabric surface were also studied. The results indicated that Rf greatly influenced molecular mass distribution of the latex copolymers, the molecular aggregation states and orientation of Rf on the coated fabric surface, and water‐repellency of coated cotton fabrics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
860.
A novel 17β‐estradiol molecularly imprinted polymer was grafted onto the surface of initiator‐immobilized silica by surface‐initiated atom transfer radical polymerization. The resulting molecularly imprinted polymer was characterized by elemental analysis and thermogravimetric analysis. The binding property of molecularly imprinted polymer for 17β‐estradiol was also studied with both static and dynamic methods. The results showed that the molecularly imprinted polymer possessed excellent recognition capacity for 17β‐estradiol (180.65 mg/g at 298 K), and also exhibited outstanding selectivity for 17β‐estradiol over the other competitive compounds (such as testosterone and progesterone). Then, the determination of trace 17β‐estradiol in beef samples was successfully developed by using molecularly imprinted polymer solid‐phase extraction coupled with high‐performance liquid chromatography. The limit of detection was 0.25 ng/mL, and the amount of 17β‐estradiol in beef samples was detected at 2.83 ng/g. This work proposed a sensitive, rapid, reliable, and convenient approach for the determination of trace 17β‐estradiol in complicated beef samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号