首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   54篇
  国内免费   17篇
化学   351篇
力学   1篇
物理学   5篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   10篇
  2018年   11篇
  2017年   16篇
  2016年   23篇
  2015年   27篇
  2014年   25篇
  2013年   32篇
  2012年   32篇
  2011年   23篇
  2010年   21篇
  2009年   9篇
  2008年   19篇
  2007年   13篇
  2006年   14篇
  2005年   7篇
  2004年   17篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有357条查询结果,搜索用时 261 毫秒
101.
Summary.  Optically active diastereomeric β-hydroperoxy esters 4 have been prepared by singlet oxygen ene reaction of β,γ-unsaturated esters 3 and subsequent horseradish peroxidase (HRP) catalyzed kinetic resolution of the ene product. The highest enantiomeric excess (up to 95%) has been obtained for the isopropyl ester threo-4c, which establishes that the size of the remote ester functionality exercises appreciable control in the enantioselectivity of the enzymatic kinetic resolution. Received December 20, 1999. Accepted (revised) February 11, 2000  相似文献   
102.
Despite the efficiency and robustness of the widely used copper‐catalyzed 1,3‐dipolar cycloaddition reaction, the use of copper as a catalyst is often not attractive, particularly for materials intended for biological systems. The use of photo‐initiated thiol‐ene as an alternative “click” reaction to synthesize “model networks” is investigated here. Poly(N‐isopropylacrylamide) precursors were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and were designed to have trithiocarbonate moieties as end groups. This structure design provides opportunity for subsequent end‐group modifications in preparation for thiol‐ene “click.” Two reaction routes have been proposed and studied to yield thiol and ene moieties. The advantages and disadvantages of each reaction path were investigated to propose a simple but efficient route to prepare copper‐free “click” hydrogels. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4626–4636  相似文献   
103.
New diene and dithiol monomers, based on aromatic imides such as benzophenone‐3,3′,4,4′‐tetracarboxylic diimide were synthesized and used in thiol‐ene polymerizations which yield poly(imide‐co‐thioether)s. These linear polymers exhibit limited solubility in various organic solvents. The molecular weights of the polymers were found to decrease with increasing imide content. The glass transition temperature (Tg) of these polymers is dependent on imide content, with Tg values ranging from ?55 °C (with no imide) up to 13 °C (with 70% imide). These thermal property improvements are due to the H‐bonding and rigidity of the aromatic imide moieties. Thermal degradation, as studied by thermogravimetric analysis, was not significantly different to the nonimide containing thiol‐ene polymers made using trimethyloylpropane diallyl ether and 3,5‐dioxa‐1,8‐dithiooctane. It is expected that such monomers may lead to increased glass transition temperatures in other thiol‐ene polymer systems as these normally exhibit low glass transition temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4637–4642  相似文献   
104.
105.
Well‐defined in‐chain norbornene‐functionalized poly(ethylene oxide)‐b‐poly(?‐caprolactone) copolymers (NB‐PEO‐b‐PCL) were synthesized from a dual clickable containing both hydroxyl‐ and alkyne‐reactive groups, namely heterofunctional norbornene 3‐exo‐(2‐exo‐(hydroxymethyl)norborn‐5‐enyl)methyl hexynoate. A range of NB‐PEO‐b‐PCL copolymers were obtained using a combination of orthogonal organocatalyzed ring‐opening polymerization (ROP) and click copper‐catalyzed azide–alkyne cycloaddition (CuAAC). Ring‐opening metathesis polymerization (ROMP) of NB‐PEO‐b‐PCL macromonomers using ruthenium‐based Grubbs’ catalysts provides comb‐like and umbrella‐like graft copolymers bearing both PEO and PCL grafts on each monomer unit. Mikto‐arm star A2B2 copolymers were obtained through a new strategy based on thiol–norbornene photoinitiated click chemistry between 1,3‐propanedithiol and NB‐PEO‐b‐PCL. The results demonstrate that in‐chain NB‐PEO‐b‐PCL copolymers can be used as a platform to prepare mikto‐arm star, umbrella‐, and comb‐like graft copolymers. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 4051–4061  相似文献   
106.
Well‐defined PDMS telechelics having nitrobenzoxadiazole (NBD) fluorescent probes covalently attached at both chain‐ends were prepared in two steps and a series of fractionation procedures starting from commercially available divinyl‐terminated PDMS having a broad molar mass dispersity. First, thiol‐ene coupling between 6‐mercapto‐1‐hexanol and vinyl chain‐ends allowed the formation of dihydroxy‐terminated PDMS telechelics through the formation of a thioether linkage. The resulting material was then sequentially fractionated using dichloromethane/methanol mixtures to afford several well‐defined dihydroxy‐terminated PDMS fractions having sharp distributions of molar masses (Mn = 99.5–158 kDa and ? < 1.2). The NBD fluorescent probes were then attached at both chain‐ends by N,N′‐dicyclohexylcarbodiimide/4‐(dimethylamino)pyridine esterification coupling between the hydroxyl groups and 6‐(7‐nitrobenzofurazan‐4‐ylamino)hexanoic acid. The resulting fluorescent PDMS telechelics were characterized by SEC, 1H NMR, UV–visible, and fluorescence spectroscopies. These materials are suitable probes to investigate the dynamics of polymer chains in bulk or at interfaces by the fringe pattern fluorescent recovery after photobleaching technique. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
107.
We describe the use of organic catalysis for the ring‐opening polymerization of functionalized lactones and conversion of the resulting aliphatic polyesters into crosslinked nanoparticles that carry additional functional groups amenable to further modification. Specifically, highly functional aliphatic polyester homopolymers, as well as random and block copolymers, were prepared by 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene catalysis, giving polyesters with pendent alkene and alkyne groups. Azide‐alkyne click and thiol‐ene chemistries were used for postpolymerization modification of diblock copolymers possessing alkene groups on one block and alkyne groups on the other block. The polyesters were crosslinked using azide/alkyne cycloaddition, by reaction of α,ω‐diazides with the pendent alkynes on the polyester backbone. This gave polyester nanoparticles possessing alkene functionality, which were subjected to further modification using thiol‐ene reactions to introduce additional functionality. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
108.
Carboxymethyl cellulose (CMC) is functionalized with norbornene groups to undergo thiol‐norbornene cross‐linking reactions. Hydrogels synthesized from a single norbornene‐modified carboxymethyl cellulose (NorCMC) via a light‐initiated thiol‐ene cross‐linking reaction with a variety of dithiol cross‐linkers yield hydrogels with a tunable compression modulus ranging from 1.7 to 103 kPa. Additionally, thermoresponsiveness is spatiotemporally imparted to NorCMC hydrogels by photopatterning a dithiol‐terminated poly(N‐isopropyl acrylamide) cross‐linker, enabling swelling and topological control of the hydrogels as a function of incubation temperature. NorCMC hydrogels are cytocompatible as the viability of encapsulated human mesenchymal stem cells (hMSCs) is greater than 85% after 21 d while using a variety of cross‐linkers. Moreover, hMSCs can remodel, adhere, and spread in the NorCMC matrix cross‐linked with a matrix metalloproteinase‐degradable peptide, further demonstrating the utility of these materials as a tunable biomaterial.  相似文献   
109.
CO2‐based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol‐ene and amines‐cyclic carbonates. This strategy to utilize 5‐membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol‐ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4‐vinyl‐1,3‐dioxolan‐2‐one and thiols. Multi‐functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6‐diaminohexane to generate crosslinked PHUs from 25 to 80 °C. These materials are easy to scale‐up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between ?1 and 16 °C and thermal decomposition temperatures from 190 to 230 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号