首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   46篇
  国内免费   17篇
化学   531篇
力学   17篇
综合类   1篇
数学   9篇
物理学   52篇
  2024年   1篇
  2023年   31篇
  2022年   72篇
  2021年   58篇
  2020年   38篇
  2019年   41篇
  2018年   13篇
  2017年   38篇
  2016年   34篇
  2015年   27篇
  2014年   28篇
  2013年   35篇
  2012年   32篇
  2011年   20篇
  2010年   24篇
  2009年   20篇
  2008年   20篇
  2007年   14篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有610条查询结果,搜索用时 125 毫秒
91.
Poly(lactic acid) (PLA) is a versatile, bioabsorbable, and biodegradable polymer with excellent biocompatibility and ability to incorporate a great variety of active agents. Silver sulfadiazine (SDZ) is an antibiotic used to control bacterial infection in external wounds. Aiming to combine the properties of PLA and SDZ, hydrotalcite ([Mg–Al]‐LDH) was used as a host matrix to obtain an antimicrobial system efficient in delivering SDZ from electrospun PLA scaffolds intended for wound skin healing. The structural reconstruction method was successfully applied to intercalate silver sulfadiazine in the [Mg–Al]‐LDH, as evidenced by X‐ray diffraction and thermogravimetric analyses. Observations by scanning electron microscopy revealed a good distribution of SDZ‐[Mg–Al]‐LDH within the PLA scaffold. Kinetics studies revealed a slow release of SDZ from the PLA scaffold due to the intercalation in the [Mg–Al]‐LDH. In vitro antimicrobial tests indicated a significant inhibitory effect of SDZ‐[Mg–Al]‐LDH against Escherichia coli and Staphylococcus aureus. This antibacterial activity was sustained in the 2.5‐wt% SDZ‐[Mg–Al]‐LDH–loaded PLA nanofibers, which also displayed excellent biocompatibility towards human cells. The multifunctionality of the PLA/SDZ‐[Mg–Al]‐LDH scaffold reported here is of great significance for various transdermal applications.  相似文献   
92.
《先进技术聚合物》2018,29(6):1815-1825
Ricinoleic acid (RA) has potential to promote wound healing because of its analgesic and anti‐inflammatory properties. This study investigates the synthesis and characterization of RA liposomes infused in a hydrogel for topical application. Lecithin liposomes containing RA were prepared and incorporated into a chitosan solution and were subsequently cross‐linked with di‐aldehyde β‐cyclodextrin (Di‐β‐CD). Chitosan/Di‐β‐CD concentrations and reaction temperatures were varied to alter gelation time, water content, and mechanical properties of the hydrogel in an effort to obtain a wide range of RA release profiles. Hydrogel cross‐linking was confirmed by spectroscopy, and liposome and carrier hydrogel morphology via microscopy. Chitosan, Di‐β‐CD, and liposome concentrations within the formulation affected the extent of matrix swelling, mechanical strength, and pore and overall morphology. Higher cross‐linking density of the hydrogel led to lower water uptake and slower release rate of RA. Optimized formulations resulted in a burst release of RA followed by a steady release pattern accounting for 80% of the encapsulated RA over a period of 48 hours. However, RA concentrations above 0.1 mg/mL were found to be cytotoxic to fibroblast cultures in vitro because of the oily nature of RA. These formulations promoted wound healing when used to treat full thickness skin wounds (2 cm2) in Wister male rats. The wound contraction rates were significantly higher compared to a commercially available topical cream after a time period of 21 days. Histopathological analysis of the RA‐liposomal chitosan hydrogel group showed that the epidermis, dermis, and subcutaneous skin layers displayed an accelerated yet normal healing compared to control group.  相似文献   
93.
Surface modification of biomaterials is a way to tailor cell responses whilst retaining the bulk properties. In this work, chitosan membranes were prepared by solvent casting and treated with nitrogen or argon plasma at 20 W for 10-40 min. AFM indicated an increase in the surface roughness as a result of the ongoing etching process. XPS and contact angle measurements showed different surface elemental compositions and higher surface free energy. The MTS test and direct contact assays with an L929 fibroblast cell line indicated that the plasma treatment improved the cell adhesion and proliferation. Overall, the results demonstrated that such plasma treatments could significantly improve the biocompatibility of chitosan membranes and thus improve their potential in wound dressings and tissue engineering applications.  相似文献   
94.
Praseodymium oxide (Pr6O11), hematite (Fe2O3), graphene oxide (GO), and polycaprolactone (PCL) based polymeric nanocomposites (NCs) are fabricated, aiming their usage as bio-scaffold for medical purposes. Because of their distinctive light absorption and stability, Fe2O3 and Pr6O11 have been introduced as potential optical elements. The structure and size examination of NCs were executed by XRD, Raman, and FESEM. Pr6O11/Fe2O3/GO@PCL polymeric NC is exhibited Pr6O11, and Fe2O3 average size of 1.4, 0.4 µm, while average pores size 2.1 µm. As well, the Uv–Vis shows an absorption edge shifting along the x-axis that it begins with 3.1 eV for pure PCL, after that it declined to 1.7 eV for Pr6O11@PCL NC. Also, Pr6O11 @PCL, and Pr6O11/ Fe2O3@PCL NCs show the lowest similar contact angle with 38°. Regarding cell attachment evaluation test, the Pr6O11/Fe2O3/GO@PCL NC healing valuation is touched ∼ 80%. As a result, the structure enabled 3-dimensional the division of normal cells, so promoting wound healing.  相似文献   
95.
Actinidin is a cysteine protease abundant in Kiwifruit. This enzyme is known as a meat-tenderizing protease. In this project, actinidin was purified from kiwifruit by salt precipitation and ion exchange chromatography. Collagenolytic effect of the purified enzyme was tested in four different buffer systems. Thereafter, the enzyme was used for isolation and culture of cells from three different tissues: endothelial cells from human umbilical vein, hepatocytes from rat liver, and thymic epithelial cells from rat thymus. Our results revealed that actinidin can hydrolyze collagen types I and II at neutral and alkaline buffers. Furthermore, actinidin compared with type II or IV collagenase isolated intact human umbilical vein endothelial cells, hepatocytes, and thymic epithelial cells with viability more than 90%. These results address a novel and valuable collagenase, which can be used efficiently for hydrolysis of collagen and isolation of different cell populations from various solid tissues.  相似文献   
96.
Sulfated glycosaminoglycans were labeled with biotin to study their interaction with cells in culture. Thus, heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate and dermatan sulfate were labeled using biotin-hydrazide, under different conditions. The structural characteristics of the biotinylated products were determined by chemical (molar ratios of hexosamine, uronic acid, sulfate and biotin) and enzymatic methods (susceptibility to degradation by chondroitinases and heparitinases). The binding of biotinylated glycosaminoglycans was investigated both in endothelial and smooth muscle cells in culture, using a novel time resolved fluorometric method based on interaction of europium-labeled streptavidin with the biotin covalently linked to the compounds. The interactions of glycosaminoglycans were saturable and number of binding sites could be obtained for each individual compound. The apparent dissociation constant varied among the different glycosaminoglycans and between the two cell lines. The interactions of the biotinylated glycosaminoglycans with the cells were also evaluated using confocal microscopy. We propose a convenient and reliable method for the preparation of biotinylated glycosaminoglycans, as well as a sensitive non-competitive fluorescence-based assay for studies of the interactions and binding of these compounds to cells in culture.  相似文献   
97.
Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca2+, and ionic cross-linking is facilitated by lowering the solution pH. The resulting sodium alginate/gelatin HX-12C-loaded hydrogel (CaAGEAM) has good mechanical and adhesion properties, biocompatibility and in vitro degradability. Its extraordinary antibacterial efficacy (>98%) is verified by an antibacterial experiment. More importantly, in vivo experiments further demonstrate its healing-promotion effect, with a 95% wound healing rate by day 9. Tissue staining demonstrates that the hydrogel containing antimicrobial peptides is effective in suppressing inflammation. The dressing promotes wound healing by stimulating the deposition of skin appendages and collagen. The results of this study suggest that composite hydrogels containing antimicrobial peptides are a promising new type of dressing to promote the healing of infected wounds.  相似文献   
98.
Growth factors are essential for wound healing owing to their multiple reparative effects. Concentrated growth factor (CGF) is a third-generation platelet extract containing various endogenous growth factors. Herein, a CGF extract solution is combined with gelatin methacrylate (GM) by physical blending to produce GM@CGF hydrogels for wound repair. The GM@CGF hydrogels show no immune rejection during autologous transplantation. Compared to CGF, GM@CGF hydrogels not only exhibit excellent plasticity and adhesivity but also prevent rapid release and degradation of growth factors. The GM@CGF hydrogels display good injectability, self-healing, swelling, and degradability along with outstanding cytocompatibility, angiogenic functions, chemotactic functions, and cell migration-promoting capabilities in vitro. The GM@CGF hydrogel can release various effective molecules to rapidly initiate wound repair, stimulate the expressions of type I collagen, transform growth factor β1, epidermal growth factor, and vascular endothelial growth factor, promote the production of granulation tissues, vascular regeneration and reconstruction, collagen deposition, and epidermal cell migration, as well as prevent excessive scar formation. In conclusion, the injectable GM@CGF hydrogel can release various growth factors and provide a 3D spatial structure to accelerate wound repair, thereby providing a foundation for the clinical application and translation of CGF.  相似文献   
99.
Accelerating the coagulation process and preventing wound infection are major challenges in the wound care process. Therefore, new multifunctional wound dressings with procoagulant, antibacterial, and antioxidant properties have enormous potential for clinical application. In this work, biodegradable hydrogels containing herbal extracts are prepared for wound dressings. First, the active ingredients are extracted from Amaranthus spinosus (A. spinosus) and Rubia cordifolia (R. cordifolia) and added to the hydrogels prepared from microcrystalline cellulose (MCC), carrageenan, and sodium alginate. Then the composite hydrogels are air-dried to obtain the wound dressings. The wound dressings prepared in this work have good biocompatibility and moisture retention. The mechanical properties of the wound dressings are further improved with the addition of MCC. Besides, the wound dressings have excellent procoagulant, antibacterial, and antioxidant properties due to the presence of R. cordifolia extract. Overall, the most effective group of wound dressings with different ingredient formulations reduces clotting time by 75% and largely inhibits bacterial growth. The wound dressings perform well in the animal wound models to promote wound healing. These results indicate that the hydrogel wound dressings prepared in this work have great potential for medical applications.  相似文献   
100.
采用化学共沉淀法制备了柠檬酸钠修饰Fe_3O_4纳米粒子(NPs),使用胎牛血清(FBS)改善Fe_3O_4NPs的分散性.实验表明Fe_3O_4NPs尺寸均匀,且具有良好的稳定性,FBS浓度小于5%(体积分数)时,Fe_3O_4NPs无聚集沉淀;在300 K下,饱和磁化强度达到74.86×10~(-3)A·m~2/g(74.86 emu/g);核磁共振T2序列成像时,75μg/m L Fe_3O_4NPs与慢病毒载体(LV)共同标记内皮祖细胞(EPCs)成像效果良好;而且EPCs具有稳定过表达目的基因血管内皮生长因子(VEGF)的能力.利用Fe_3O_4NPs与LV共同感染EPCs,可有效促进大鼠血管生成.说明修饰后的EPCs兼具核磁共振成像(MRI)示踪和促血管生成双重功能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号