首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   40篇
  国内免费   17篇
化学   534篇
力学   17篇
综合类   1篇
数学   9篇
物理学   52篇
  2024年   2篇
  2023年   31篇
  2022年   73篇
  2021年   58篇
  2020年   39篇
  2019年   41篇
  2018年   13篇
  2017年   38篇
  2016年   34篇
  2015年   27篇
  2014年   28篇
  2013年   35篇
  2012年   32篇
  2011年   20篇
  2010年   24篇
  2009年   20篇
  2008年   20篇
  2007年   14篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
31.
Modulation of material properties and growth factor application are critical in constructing suitable cell culture environments to induce desired cellular functions. Sulfonated polyrotaxane (PRX) surfaces with immobilized vascular endothelial growth factors (VEGFs) are prepared to improve network formation in vascular endothelial cells. Sulfonated PRXs, whereby sulfonated α‐cyclodextrins (α‐CDs) are threaded onto a linear poly(ethylene glycol) chain capped with bulky groups at both terminals, are coated onto surfaces. The molecular mobility of sulfonated PRX surfaces is modulated by tuning the number of threading α‐CDs. VEGF is immobilized onto surfaces with varying mobility. Low mobility and VEGF‐immobilization reinforce cell proliferation, yes‐associated protein activity, and rhoA, pdgf, ang‐1, and pecam‐1 gene expression. Highly mobile surfaces and soluble VEGF weakly affect these cell responses. Network formation is strongly stimulated in vascular endothelial cells only on low‐mobility VEGF‐immobilized surfaces, suggesting that molecular mobility and VEGF immobilization synergistically control cell function.  相似文献   
32.
《中国化学快报》2020,31(6):1499-1503
Surgical suture is commonly used in clinic due to its action in accelerating the process of wound healing.However,difficultly handling in minimally invasive surgery and bacteria-induced infection usually limit its use in a wide range of applications.Here,we report a facile scalable strategy to fabricate surgical sutures with shape memory function and antibacterial activity for wound healing.Specifically,a shape memory polyurethane(SMPU) with a transition temperature(T_(trans)) at 41.3℃ was synthesized by adjusting the mole ratio of the hard/soft segment,and then the shape memory surgical sutures containing polyhexamethylene biguanide hydrochloride(PHMB) as a model drug for antibacterial activity were fabricated by a facile scalable one-step wet-spinning approach,in which PHMB was directly dissolved in the coagulation bath that enable its loading into the sutures through the dual diffusion during the phase separation.The prepared sutures were characterized by their morphology,mechanical properties,shape memory,antibacterial activity,as well as biocompatibility before the wound healing capability was tested in a mouse skin suture-wound model.It was demonstrated that the optimized suture is capable of both shape memory function and antibacterial activity,and promote wound healing,suggesting that the facile scalable one-step wet-spinning strategy provides a promising tool to fabricate surgical sutures for wound healing.  相似文献   
33.
Poly(lactic acid) (PLA) is a versatile, bioabsorbable, and biodegradable polymer with excellent biocompatibility and ability to incorporate a great variety of active agents. Silver sulfadiazine (SDZ) is an antibiotic used to control bacterial infection in external wounds. Aiming to combine the properties of PLA and SDZ, hydrotalcite ([Mg–Al]‐LDH) was used as a host matrix to obtain an antimicrobial system efficient in delivering SDZ from electrospun PLA scaffolds intended for wound skin healing. The structural reconstruction method was successfully applied to intercalate silver sulfadiazine in the [Mg–Al]‐LDH, as evidenced by X‐ray diffraction and thermogravimetric analyses. Observations by scanning electron microscopy revealed a good distribution of SDZ‐[Mg–Al]‐LDH within the PLA scaffold. Kinetics studies revealed a slow release of SDZ from the PLA scaffold due to the intercalation in the [Mg–Al]‐LDH. In vitro antimicrobial tests indicated a significant inhibitory effect of SDZ‐[Mg–Al]‐LDH against Escherichia coli and Staphylococcus aureus. This antibacterial activity was sustained in the 2.5‐wt% SDZ‐[Mg–Al]‐LDH–loaded PLA nanofibers, which also displayed excellent biocompatibility towards human cells. The multifunctionality of the PLA/SDZ‐[Mg–Al]‐LDH scaffold reported here is of great significance for various transdermal applications.  相似文献   
34.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
35.
In this article, a fast and high efficient healing hydroxypropyl guar gum (HPG)/poly(N,N‐dimethyl acrylamide) (PDMA) hydrogel is prepared by a facile synthesis method. HPG networks are formed through hydrogen‐bond interaction between the hydroxyl groups in the HPG chains, and PDMA networks are self‐crosslinked without any chemical crosslinker. The cut hydrogel could heal when nanosilica solution is chosen as the connector that is related to the adsorption of polymer to the surface of nanosilica. The fracture stress of the HPG/PDMA gels presents a fast and almost full recovery within a short time (1 min), while the recovery of fracture strain and elastic modulus is related to time in 2 h. The healing efficiency of HPG/PDMA gel is investigated as a function of healing time, HPG content, and N,N‐dimethyl acrylamide content. The microscopic healing process and healing mechanism are also discussed. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 239–247  相似文献   
36.
The elastic moduli of the dense polycrystalline oxygen‐bearing η‐Ta2N3, a novel hard and tough high‐pressure (HP) material, were measured using the laser ultrasonic technique. The bulk modulus was determined to be B0 = 281(15) GPa which is only ~11% below that from HP compression measurements. Our value of the shear modulus G0 = 123(2) GPa is below those ones predicted theoretically for model structures. The discrepancies in G0 could be due to a substitution of an‐ ions and the formation of cation vacancies in η‐Ta2N3. Self‐healing behaviour of η‐Ta2N3 by mechanical polishing was observed and confirmed by two independent experimental methods. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
37.
易志红  白洋  陈立荪  徐峰  陈利江 《应用数学》2015,37(11):951-954
目的 观察丹酚酸A 对H2O2所致大鼠脑微血管内皮细胞(RCMECs)氧化损伤的保护作用,并探讨其可能的作用机制。方法 分离并培养大鼠脑微血管内皮细胞,用H2 O2 损伤的方法建立氧自由基损伤模型。采用丹酚酸A 进行干预后,分别测定细胞培养液中乳酸脱氢酶(LDH)活性、血栓素B2(TXB2)水平、6- 酮基前列腺素1α(6-keto-PGF1α)的含量,以及细胞内和培养液中脂质过氧化产物丙二醛(MDA)含量和超氧化物歧化酶(SOD)的活性。结果 H2O2致RCMECs 氧化损伤后,细胞LDH 释放水平、TXB2和MDA 的含量均明显增加,同时6-keto-PGF1α 含量和SOD 活性显著下降;而丹酚酸A 预处理后能呈浓度依赖性的降低RCMECs 氧化损伤后LDH 水平、TXB2含量和细胞内外的MDA 含量,提高受损细胞6-keto-PGF1α 的表达和细胞内外SOD 活性。结论 丹酚酸A 对H2O2所致RCMECs 氧化损伤具有保护作用,其机制可能与其抗氧化作用有关。  相似文献   
38.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in science and industry. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves (TiNPs@Ziziphora). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. The synthesized TiNPs@Ziziphora had great cell viability dose‐dependently (Investigating the effect of the plant on human umbilical vein endothelial cells (HUVECs) cell line) and revealed this method was nontoxic. Then, 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for TiNPs@Ziziphora and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. The data were analyzed by SPSS 21 software (Duncan post‐hoc test). TiNPs@Ziziphora indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, TiNPs@Ziziphora inhibited the growth of all bacteria at 2‐16 mg/ml concentrations and removed them at 2‐32 mg/ml concentrations (p ≤ 0.01). In case of antifungal properties of TiNPs@Ziziphora, they prevented the growth of all fungi at 2‐8 mg/ml concentrations and destroyed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% TiO2 ointment, treatment with 0.2% Z. clinopodioides ointment, and treatment with 0.2% TiNPs@Ziziphora ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of TiNPs@Ziziphora ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In conclusion, the results revealed the useful non‐cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects of TiNPs@Ziziphora.  相似文献   
39.
Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.  相似文献   
40.
Refractory wounds have always been an important issue to healthcare systems, whose healing process is always delayed by multiple factors, including bacterial infections, chronic inflammation, and excessive exudates, etc. Employing multifunctional wound dressings is recognized as an effective strategy to deal with refractory wounds, which has yielded promising outcomes in recent years. Among these advanced wound dressings, fibrous dressings have gained growing attention due to their unique merits. Such wound dressings have demonstrated great potential in delivering theranostic agents, such as antibacterial agents, anti-inflammatory drugs, growth factors, and diagnostic probes, etc., for the purposes of accelerating wound healing. This paper reviews the development of multifunctional fibrous dressings and their applications in treating refractory wounds. The construction approaches of novel fibrous dressing with capabilities of antibacterial, anti-inflammation, exudate management and diagnosis were also introduced. Furthermore, the existing problems and challenges are also discussed briefly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号