首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148317篇
  免费   16153篇
  国内免费   15990篇
化学   130365篇
晶体学   2118篇
力学   3950篇
综合类   890篇
数学   17787篇
物理学   25350篇
  2024年   105篇
  2023年   778篇
  2022年   1876篇
  2021年   2358篇
  2020年   3230篇
  2019年   4524篇
  2018年   4120篇
  2017年   5428篇
  2016年   5860篇
  2015年   7593篇
  2014年   8308篇
  2013年   13190篇
  2012年   11544篇
  2011年   10084篇
  2010年   8297篇
  2009年   9621篇
  2008年   10107篇
  2007年   9829篇
  2006年   8864篇
  2005年   7812篇
  2004年   6943篇
  2003年   6000篇
  2002年   7072篇
  2001年   4230篇
  2000年   3943篇
  1999年   3093篇
  1998年   2331篇
  1997年   1849篇
  1996年   1577篇
  1995年   1484篇
  1994年   1340篇
  1993年   1118篇
  1992年   1042篇
  1991年   693篇
  1990年   580篇
  1989年   548篇
  1988年   409篇
  1987年   313篇
  1986年   292篇
  1985年   243篇
  1984年   247篇
  1983年   142篇
  1982年   218篇
  1981年   180篇
  1980年   202篇
  1979年   186篇
  1978年   176篇
  1977年   125篇
  1976年   110篇
  1973年   70篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
61.
Highly dispersed palladium nanoclusters incorporated on amino‐functionalized silica sphere surfaces (Pd/SiO2‐NH2) were fabricated by a simple one‐pot synthesis utilizing 3‐(2‐aminoethylamino)propyltrimethoxysilane (AAPTS) as coordinating agent. Uniform palladium nanoclusters with an average size of 1.1 nm can be obtained during the co‐condensation of tetraethyl orthosilicate and AAPTS owing to the strong interaction between palladium species and amino groups in AAPTS. The palladium particle size can be controlled by addition of AAPTS and plays a significant role in the catalytic performance. The Pd/SiO2‐NH2 catalyst exhibits high catalytic activity for succinic acid hydrogenation with 100% conversion and 94% selectivity towards γ‐butyrolactone using 1,4‐dioxane as solvent at 240°C and 60 bar for 4 h. Moreover, the Pd/SiO2‐NH2 catalyst is robust and readily reusable without loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
62.
With a vast, synthetically accessible compositional space and highly tunable hydrolysis rates, poly(β-amino ester)s (PBAEs) are an attractive degradable polymer platform. Leveraging PBAEs in a wide range of applications hinges on the ability to program degradation, which, thus far, has been frustrated by multiple confounding phenomena contributing to the degradation of these charged polyesters. Basic conditions accelerate hydrolysis, yet reduce solubility, limiting water access to amines and esters. Further, the high buffering capacity of PBAEs can render buffers ineffective at controlling solution pH. To unify understanding of PBAE degradation and solution properties, this study examines PBAE hydrolysis as a function of pH and buffer concentration as well as polymer hydrophobicity. At low buffer concentrations, the PBAE amines and the acid produced during hydrolysis control solution pH. Meanwhile, at high buffer concentrations that afford relatively constant pH, hydrolysis rate increases with pH, despite the reduced PBAE solubility. Increasing the hydrophobic content of PBAEs eventually hinders the capacity of the polymer to accept protons from solution, limiting the pH increase and slowing hydrolysis. These studies showcase the role of buffering on the pH-dependent degradation and solution properties of PBAEs, providing guidance for programming degradation in applications ranging from drug delivery to thermosets.  相似文献   
63.
64.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
65.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
66.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
67.
A high‐throughout bioanalytical method based on salting‐out‐assisted liquid/liquid extraction (SALLE) method with acetonitrile and mass spectrometry‐compatible salts followed by LC‐MS/MS analysis of trimetazidine in rat plasma is presented. It required only 50 μL of plasma and allows the use of minimal volumes of organic solvents. The seamless interface of SALLE and LC‐MS eliminated the drying‐down step and the extract was diluted and injected into an LC‐MS/MS system with a cycle time of 2.5 min/sample. The retention times of trimetazidine and IS were approximately 1.1 and 1.7 min, respectively. Calibration curves were linear over the concentration range of 0.1–100 ng/mL, which can be extended to 500 ng/mL by dilution. The intra‐ and inter‐batch precision, accuracy and the relative standard deviation were all <15%. This method was successfully applied to determine trimetazidine concentrations in rat plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
68.
Acetyl‐l ‐carnitine (ALCAR) is a potential biomarker for the modulation of brain neurotransmitter activity, but is also present in cerebrospinal fluid (CSF). Recent studies have utilized hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC‐MS/MS) based assays to detect and quantify ALCAR within biofluids such as urine, plasma and serum, using various sample pretreatment procedures. In order to address the need to quantify ALCAR in CSF on a high‐throughput scale, a new and simple HILIC‐MS/MS assay has been successfully developed and validated. For rapid analysis, CSF sample pretreatment was performed via ‘dilute and shoot’ directly onto an advanced HILIC column prior to MS/MS detection. This newly developed HILIC‐MS/MS assay shows good recoveries of ALCAR without the need for chemical derivatization and multistep sample extraction procedures. The employment of this assay is suitable for the high‐throughput bioanalysis and quantification of ALCAR within the CSF of various animal models and human clinical studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
69.
Small molecule additives have been shown to increase the device efficiency of conjugated polymer (donor) and fullerene derivative (acceptor) based organic solar cells by modifying the morphology of the device active layer. In this paper we conduct a systematic study of how additives affect the donor‐acceptor morphology using molecular dynamics simulations of blends of thiophene‐based oligomers, mimicking poly(3‐dodecylthiophene) (P3DDT) or poly(2,2′:5′,2”‐3,3”‐didocyl‐terthiophene) (PTTT), and fullerene derivatives with additives of varying length and chemical functionalization, mimicking experimentally used additives like methyl ester additives, diiodooctane, and alkanedithiols. We find that functionalization of additives with end groups that are attracted to acceptor molecules are necessary to induce increased donor‐acceptor macrophase separation. In blends where acceptors intercalate between oligomer alkyl side chains, functionalized additives decrease acceptor intercalation. Functionalized additives with shorter alkyl segments increase acceptor macrophase separation more than additives with same chemical functionalization but longer alkyl segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1046–1057  相似文献   
70.
A general and efficient methodology for the direct transition metal free trifluoromethylthiolation of a broad range of biologically relevant N‐heteroarenes is reported employing abundant sodium chloride as the catalyst. This method is operationally simple, exhibits high functional group tolerance, and does not require protecting groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号