全文获取类型
收费全文 | 33993篇 |
免费 | 3322篇 |
国内免费 | 2652篇 |
专业分类
化学 | 19183篇 |
晶体学 | 1044篇 |
力学 | 1942篇 |
综合类 | 246篇 |
数学 | 934篇 |
物理学 | 16618篇 |
出版年
2025年 | 31篇 |
2024年 | 378篇 |
2023年 | 397篇 |
2022年 | 851篇 |
2021年 | 948篇 |
2020年 | 1159篇 |
2019年 | 1115篇 |
2018年 | 1083篇 |
2017年 | 1297篇 |
2016年 | 1594篇 |
2015年 | 1345篇 |
2014年 | 1736篇 |
2013年 | 2986篇 |
2012年 | 2256篇 |
2011年 | 2366篇 |
2010年 | 1888篇 |
2009年 | 2026篇 |
2008年 | 1860篇 |
2007年 | 2018篇 |
2006年 | 1727篇 |
2005年 | 1435篇 |
2004年 | 1341篇 |
2003年 | 1154篇 |
2002年 | 1178篇 |
2001年 | 805篇 |
2000年 | 738篇 |
1999年 | 675篇 |
1998年 | 549篇 |
1997年 | 427篇 |
1996年 | 387篇 |
1995年 | 318篇 |
1994年 | 297篇 |
1993年 | 260篇 |
1992年 | 248篇 |
1991年 | 135篇 |
1990年 | 122篇 |
1989年 | 106篇 |
1988年 | 142篇 |
1987年 | 91篇 |
1986年 | 77篇 |
1985年 | 57篇 |
1984年 | 55篇 |
1983年 | 28篇 |
1982年 | 58篇 |
1981年 | 47篇 |
1980年 | 27篇 |
1979年 | 45篇 |
1978年 | 27篇 |
1977年 | 20篇 |
1973年 | 15篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Ying‐Ling Liu Chuan‐Shao Wu Yie‐Shun Chiu Wen‐Hsuan Ho 《Journal of polymer science. Part A, Polymer chemistry》2003,41(15):2354-2367
A novel epoxy system was developed through the in situ curing of bisphenol A type epoxy and 4,4′‐diaminodiphenylmethane with the sol–gel reaction of a phosphorus‐containing trimethoxysilane (DOPO–GPTMS), which was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with 3‐glycidoxypropyltrimethoxysilane (GPTMS). The preparation of DOPO–GPTMS was confirmed with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. The resulting organic–inorganic hybrid epoxy resins exhibited a high glass‐transition temperature (167 °C), good thermal stability over 320 °C, and a high limited oxygen index of 28.5. The synergism of phosphorus and silicon on flame retardance was observed. Moreover, the kinetics of the thermal oxidative degradation of the hybrid epoxy resins were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2354–2367, 2003 相似文献
42.
Metal ion uptake properties of polystyrene-supported chelating polymer resins functionalized with (i) glycine, (ii) hydroxy
benzoic acid, (iii) Schiff base and (iv) diethanol amine have been investigated. The effects of pH, time and initial concentration
on the uptake of metal ions have been studied. The uptake of metal ion depends on pH. The resins are more selective at pH
10 for Pb(II) and Hg(II), whereas at pH 6 they are found to be Cd(II) and Cr(VI) selective. Metal ion uptake properties of
resins follow Freundlich’s equation. The resins are recyclable and are therefore employed for the removal of heavy metal pollutants
from industrial waste water. 相似文献
43.
N. A. A. Rossi R. G. Jones S. J. Holder 《Journal of polymer science. Part A, Polymer chemistry》2003,41(1):30-40
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003 相似文献
44.
Jin Sun Yihu Song Qiang Zheng Hong Tan Jie Yu Hong Li 《Journal of Polymer Science.Polymer Physics》2007,45(18):2594-2602
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007 相似文献
45.
M. Garcia Ramirez J. Y. Cavaill A. Dufresne P. Tkly 《Journal of Polymer Science.Polymer Physics》1995,33(15):2109-2124
Blends of the natural polymer cellulose with a synthetic polymer, polyamide 66, are studied in order to determine if the expected strong interaction between them, due to hydrogen bonds, could improve their mechanical properties such as strength and elongation at break. In a previous work {Part I, J. Polym. Sci. Polym. Phys., 32 , 1437 (1994)}, the preparation technique and the characterization of cellulose-polyamide 66 (PA66) blends were described in detail. Several samples in the composition range between 0 to 70 wt % of PA66 were carefully dried and examined using dynamic mechanical and tensile tests. Based on previous work a new percolation model has been developed. It takes both linear and nonlinear mechanical behaviors into account and allows for the effect of adhesion between material domains. From comparison between experimental and predicted data, it is concluded that a partial miscibility between the amorphous phases of cellulose and PA66 exists and is responsible for a strong adhesion at their interface. Solid-state 13C nuclear magnetic resonance has also been used to study these samples and supports the existence of strong interactions between both homopolymers. © 1995 John Wiley & Sons, Inc. 相似文献
46.
Conductive composite films of poly(styrene‐co‐n‐butylacrylate) copolymers filled with low‐density, Ni‐plated core‐shell polymeric particles were prepared and their behaviors of positive temperature coefficient of resistance (PTCR) were investigated. When the conductive fillers in the composite film were loaded beyond the critical volume, 10 up to 25 vol %, composite films exhibited a unique electrical resistant transition behavior, which the electrical resistance rapidly increased by several orders of magnitude at the critical temperature. The PTCR transition temperature, in general, occurred before the glass transition temperature of polymer matrix. Further increased the conductive filler loading to 30 vol %, the overpacked conduction paths were formed in the entire composite and the PTCR effects became blurred. While the composite film treated with thermal cycle several times from room temperature up to 120 °C, the electrical resistivity increased accompanied with the shift of the PTCR transition to lower temperature. The reason might have been caused by the formed interfacial cracks within the composite film. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 322–329, 2007 相似文献
47.
Kikue S. Burnham Robert Roth Faith Zhou Wenya Fan Emma Brouk Mehari Stifanos 《Journal of polymer science. Part A, Polymer chemistry》2006,44(24):6909-6925
In an attempt to develop a low‐k interlayer dielectric, adamantane‐diphenyldiethynyl moiety containing oligomer is prepared. Oligomerization of 1,3,5,7‐tetrakis[3/4‐ethynylphenyl]adamantane ( 4 ) is accomplished by a Glaser–Hay oxidative coupling with 1,3,5‐triethynylbenzene and phenylacetylene end‐capping agent. The CHCl3 soluble oligomer is then thermally treated by step‐curing at 200, 300, 380, and 450 °C for 30 min at each temperature under nitrogen flow to render a shiny void‐free black polymer. TGA analysis indicates that the polymer is stable under nitrogen up to 500 °C with a marginal decomposition up to 800 °C. Solid‐state 13C NMR, Raman scattering, and FTIR are used to characterize the structure of the polymer. The polymer consists of amorphous carbon networks with the adamantane moieties and nanosized graphitic regions (clusters), which are generated from the thermal crosslinking of the diphenyldiethynyl units. It shows a remarkably low linear coefficient of thermal expansion (~25 ppm/°C), presumably due to the presence of the disordered graphitic structure. Its high density (~1.21 g/cm3), refractive index (~1.80 at 632 nm), and Young's modulus (~17.0 GPa) are also consistent with the interpretation. This study reveals important details about the effect of microscopic structure on the macroscopic properties of the highly crosslinked polymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6909–6925, 2006 相似文献
48.
Ying‐Ling Liu Chia‐Yun Hsieh 《Journal of polymer science. Part A, Polymer chemistry》2006,44(2):905-913
Crosslinked polymeric materials, which exhibit thermal remendability and removability through Diels–Alder (DA) and retro‐DA reactions, were obtained from using multifunctional maleimide and furan compounds as monomers. The synthesized monomers possess low melting points and good solubility in organo solvents to show excellent processing properties. The performance of DA and retro‐DA reactions were demonstrated with DSC and FTIR measurements. High performance of thermal remendablility and removability of the crosslinked materials were observed with SEM and solvent tests. These materials were applicable in advanced encapsulants and structural materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 905–913, 2006 相似文献
49.
Chin‐Ping Yang Yu‐Yang Su Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5909-5922
Two series of novel fluorinated poly(ether imide)s (coded IIIA and IIIB ) were prepared from 2,6‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride and 2,7‐bis(3,4‐dicarboxyphenoxy)naphthalene dianhydride, respectively, with various trifluoromethyl‐substituted aromatic bis(ether amine)s by a standard two‐step process with thermal or chemical imidization of the poly(amic acid) precursors. These fluorinated poly(ether imide)s showed good solubility in many organic solvents and could be solution‐cast into transparent, flexible, and tough films. These films were nearly colorless, with an ultraviolet–visible absorption edge of 364–386 nm. They also showed good thermal stability with glass‐transition temperatures of 221–298 °C, 10% weight loss temperatures in excess of 489 °C, and char yields at 800 °C in nitrogen greater than 50%. The 2,7‐substituted IIIB series also showed better solubility and higher transparency than the isomeric 2,6‐substituted IIIA series. In comparison with nonfluorinated poly (ether imide)s, the fluorinated IIIA and IIIB series showed better solubility, higher transparency, and lower dielectric constants and water absorption. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5909–5922, 2006 相似文献
50.
Polyphenylsilsesquioxane (PPSQ) was incorporated into an epoxy resin to prepare organic–inorganic composites, and two strategies were adopted to afford composites with different morphologies. Phase separation induced by polymerization occurred in the physical blending system. However, nanostructured composites were obtained when a catalytic amount of aluminum triacetylacetonate was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). The intercomponent reaction significantly suppressed the phase separation on the micrometer scale. Organic–inorganic composites with different morphologies displayed quite different thermomechanical properties. Both differential scanning calorimetry and dynamic mechanical analysis showed that the nanostructured composites possessed higher glass‐transition temperatures than the phase‐separated composites with the same loading of PPSQ, although the intercomponent reaction between PPSQ and DGEBA reduced the crosslinking density of the epoxy matrix. This result was ascribed to the presence of nanosized PPSQ domains in the nanostructured composites, which acted as physical crosslinking sites and thus reinforced the epoxy networks. The nanoreinforcement of the PPSQ domains afforded the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase‐separated composites with a PPSQ concentration less than 15 wt %. In terms of thermogravimetric analysis, the organic–inorganic composites displayed improved thermal stability and flame retardancy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1093–1105, 2006 相似文献