首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15670篇
  免费   3147篇
  国内免费   1770篇
化学   11483篇
晶体学   578篇
力学   1338篇
综合类   73篇
数学   345篇
物理学   6770篇
  2024年   64篇
  2023年   206篇
  2022年   496篇
  2021年   546篇
  2020年   904篇
  2019年   645篇
  2018年   551篇
  2017年   605篇
  2016年   929篇
  2015年   888篇
  2014年   939篇
  2013年   1480篇
  2012年   952篇
  2011年   1103篇
  2010年   915篇
  2009年   1001篇
  2008年   1060篇
  2007年   1057篇
  2006年   957篇
  2005年   761篇
  2004年   756篇
  2003年   721篇
  2002年   508篇
  2001年   458篇
  2000年   379篇
  1999年   294篇
  1998年   258篇
  1997年   186篇
  1996年   169篇
  1995年   110篇
  1994年   119篇
  1993年   84篇
  1992年   80篇
  1991年   65篇
  1990年   58篇
  1989年   46篇
  1988年   25篇
  1987年   36篇
  1986年   31篇
  1985年   24篇
  1984年   31篇
  1983年   20篇
  1982年   18篇
  1981年   9篇
  1980年   4篇
  1979年   10篇
  1978年   4篇
  1977年   8篇
  1973年   4篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
951.
952.
The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino‐catechol synergy, polymeric pressure‐sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel‐inspired lysine‐ and aromatic‐rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM‐assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.  相似文献   
953.
We outline a methodology for efficiently computing the electromagnetic response of molecular ensembles. The methodology is based on the link that we establish between quantum-chemical simulations and the transfer matrix (T-matrix) approach, a common tool in physics and engineering. We exemplify and analyze the accuracy of the methodology by using the time-dependent Hartree-Fock theory simulation data of a single chiral molecule to compute the T-matrix of a cross-like arrangement of four copies of the molecule, and then computing the circular dichroism of the cross. The results are in very good agreement with full quantum-mechanical calculations on the cross. Importantly, the choice of computing circular dichroism is arbitrary: Any kind of electromagnetic response of an object can be computed from its T-matrix. We also show, by means of another example, how the methodology can be used to predict experimental measurements on a molecular material of macroscopic dimensions. This is possible because, once the T-matrices of the individual components of an ensemble are known, the electromagnetic response of the ensemble can be efficiently computed. This holds for arbitrary arrangements of a large number of molecules, as well as for periodic or aperiodic molecular arrays. We identify areas of research for further improving the accuracy of the method, as well as new fundamental and technological research avenues based on the use of the T-matrices of molecules and molecular ensembles for quantifying their degrees of symmetry breaking. We provide T-matrix-based formulas for computing traditional chiro-optical properties like (oriented) circular dichroism, and also for quantifying electromagnetic duality and electromagnetic chirality. The formulas are valid for light-matter interactions of arbitrarily-high multipolar orders.  相似文献   
954.
Organic–inorganic halide perovskite solar cells (PSCs) have attracted much attention due to their rapid increase in power conversion efficiencies (PCEs), and many efforts are devoted to further improving the PCEs. Designing highly efficient hole transport materials (HTMs) for PSCs may be one of the effective ways. Herein we theoretically designed three new HTMs (FDT−N, FDT−O, and FDT−S) by introducing a nitrogen-phenyl group, an oxygen atom, and a sulfur atom into the spiro core of an experimentally synthesized HTM (FDT), respectively. And then we performed quantum chemical calculation to study their application potential. The results show that the devices with FDT−O and FDT−S instead of FDT may have higher open circuit voltages owing to their lower highest occupied molecular orbital (HOMO) energy levels. Moreover, FDT−S exhibits the best hole transport performance among the studied HTMs, which may be due to the significant HOMO-HOMO overlap in the hole hopping path with the largest transfer integral. Furthermore, the results on interface properties indicate that introducing oxygen and sulfur atoms can enhance the MAPbI3/HTM interface interaction. The present work not only offers two promising HTMs (FDT−O and FDT−S) for PSCs but also provides theoretical help for subsequent research on HTMs.  相似文献   
955.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   
956.
The applications of the most promising Fe—N–C catalysts are prohibited by their limited intrinsic activities. Manipulating the Fe energy level through anchoring electron‐withdrawing ligands is found effective in boosting the catalytic performance. However, such regulation remains elusive as the ligands are only uncontrollably introduced oweing to their energetically unstable nature. Herein, we report a rational manipulation strategy for introducing axial bonded O to the Fe sites, attained through hexa‐coordinating Fe with oxygen functional groups in the precursor. Moreover, the O modifier is stabilized by forming the Fe?O?Fe bridge bond, with the approximation of two FeN4 sites. The energy level modulation thus created confers the sites with an intrinsic activity that is over 10 times higher than that of the normal FeN4 site. Our finding opens a novel strategy to manage coordination environments at an atomic level for high activity ORR catalysts.  相似文献   
957.
Hydrochromic materials that can reversibly change color upon water treatment have attracted much attention owing to their potential applications in diverse fields. Herein, for the first time, we report that space‐confined CsPbBr3 nanocrystals (NCs) are hydrochromic. When CsPbBr3 NCs are loaded into a porous matrix, reversible transition between luminescent CsPbBr3 and non‐luminescent CsPb2Br5 can be achieved upon the exposure/removal of water. The potential applications of hydrochromic CsPbBr3 NCs in anti‐counterfeiting are demonstrated by using CsPbBr3 NCs@mesoporous silica nanospheres (around 100 nm) as the starting material. Owing to the small particle size and negatively charged surface, the as‐prepared particles can be laser‐jet printed with high precision and high speed. We demonstrate the excellent stability over repeated transformation cycles without color fade. This new discovery may not only deepen the understanding of CsPbX3, but also open a new way to design CsPbX3 materials for new applications.  相似文献   
958.
Superwetting membranes with responsive properties have attracted heightened attention because of their fine‐tunable surface wettability. However, their functional diversity is severely limited by the “black‐or‐white” wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2/octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal‐expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60 L m?2 h), as well as real‐time liquid signal expression with alterable signals.  相似文献   
959.
960.
Adaptivity is an essential trait of life. One type of adaptivity is the reconfiguration of a functional system states by correlating sensory inputs. We report polymer transformers, which can adaptively reconfigure their composition from a state of a mixed copolymer to being enriched in either monomer A or B. This is achieved by embedding and hierarchically interconnecting two chemically fueled activation/deactivation enzymatic reaction networks for both monomers via a joint activation pathway (network level) and an AB linker monomer reactive to both A and B (species level). The ratio of enzymes governing the individual deactivation pathways (our external signals) control the enrichment behavior in the dynamic state. The method shows high programmability of the reconfigured state, rejuvenation of transformation cycles, and quick in situ adaptation. As a proof‐of‐concept, we showcase this dynamic reconfiguration for colloidal surface functionalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号