首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10725篇
  免费   2586篇
  国内免费   1053篇
化学   7182篇
晶体学   195篇
力学   79篇
综合类   69篇
数学   46篇
物理学   6793篇
  2024年   21篇
  2023年   97篇
  2022年   283篇
  2021年   289篇
  2020年   384篇
  2019年   299篇
  2018年   307篇
  2017年   295篇
  2016年   471篇
  2015年   516篇
  2014年   595篇
  2013年   1051篇
  2012年   679篇
  2011年   731篇
  2010年   592篇
  2009年   653篇
  2008年   655篇
  2007年   799篇
  2006年   772篇
  2005年   602篇
  2004年   524篇
  2003年   529篇
  2002年   431篇
  2001年   413篇
  2000年   357篇
  1999年   295篇
  1998年   262篇
  1997年   253篇
  1996年   202篇
  1995年   167篇
  1994年   156篇
  1993年   123篇
  1992年   86篇
  1991年   65篇
  1990年   68篇
  1989年   47篇
  1988年   47篇
  1987年   39篇
  1986年   42篇
  1985年   29篇
  1984年   36篇
  1983年   8篇
  1982年   14篇
  1981年   22篇
  1980年   15篇
  1979年   7篇
  1978年   11篇
  1975年   6篇
  1974年   3篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
W.C. Zheng  L. He  Y. Mei 《哲学杂志》2013,93(9):789-796
The spin-Hamiltonian (SH) parameters (g factors g //, g ⊥ and hyperfine structure constants 63 A //, 63 A ⊥, 65 A //, 65 A ⊥) for Cu2+ ions in the trigonally-distorted tetrahedral sites of ZnO and GaN crystals are calculated from a complete diagonalization (of energy matrix) method (CDM) based on a two spin-orbit parameter model for d 9 ions in trigonal symmetry. In the method, the Zeeman and hyperfine interaction terms are added to the Hamiltonian in the conventional CDM. The calculated results are in good agreement with the experimental values. The calculated SH parameters are also compared with those using the traditional diagonalization method or perturbation method only within the 2 T 2 term. It appears that, for exact calculations of SH parameters of d 9 ions in trigonal tetrahedral clusters in crystals, the present CDM is preferable to the traditional diagonalization method or perturbation method within the 2 T 2 term. The local structures of Cu2+ centers (which differ from the corresponding structure in the host crystal) in ZnO : Cu2+ and GaN : Cu2+ are obtained from the calculations. The results are discussed.  相似文献   
102.
103.
Yue-Xia Hu  Xue-Feng Wang 《哲学杂志》2013,93(11):1391-1400
The perturbation formulae of the spin Hamiltonian parameters (the anisotropic g factors, hyperfine structure constants and superhyperfine parameters) are established for a 5d7 ion in an orthorhombically elongated octahedron based on the cluster approach. These formulae are applied to the theoretical studies of the EPR spectra and the local structures for the tetragonal and orthorhombic Ir2+ centers in AgCl. For the tetragonal Ir2+ center, the uncompensated substitutional [IrCl6]4 cluster is found to experience a relative elongation of about 0.08 Å along the C 4 axis due to the Jahn–Teller effect. For the orthorhombic center, the ligand octahedron also suffers Jahn–Teller elongation (by about 0.08 Å) along the [001] (or Z) axis. Meanwhile, the ligand Cl intervening in the impurity Ir2+ and the next nearest neighbor silver vacancy VAg along the [100] (or X) axis may undergo an inward displacement of 0.004 Å towards the center of the octahedron due to electrostatic repulsion of the VAg. The calculated spin Hamiltonian parameters based on the above local structures show good agreement with experimental data for both centers.  相似文献   
104.
Mapping of residual stresses at the mesoscale is increasingly practical thanks to technological developments in electron backscatter diffraction (EBSD) and X-ray microdiffraction using high brilliance synchrotron sources. An analysis is presented of a Cu single crystal deformed in compression to about 10% macroscopic strain. Local orientation measurements were made on sectioned and polished specimens using EBSD and X-ray microdiffraction. In broad strokes, the results are similar to each other with orientations being observed that are on the order of 5° misoriented from that of the original crystallite. At the fine scale it is apparent that the X-ray technique can distinguish features in the structure that are much finer in detail than those observed using EBSD even though the spatial resolution of EBSD is superior to that of X-ray diffraction by approximately two orders of magnitude. The results are explained by the sensitivity of the EBSD technique to the specimen surface condition. Dislocation dynamics simulations show that there is a relaxation of the dislocation structure near the free surface of the specimen that extends approximately 650 Å into the specimen. The high spatial resolution of the EBSD technique is detrimental in this respect as the information volume extends only 200 Å or so into the specimen. The X-rays probe a volume on the order of 2 µm in diameter, thus measuring the structure that is relatively unaffected by the near-surface relaxation.  相似文献   
105.
Structural, electrical and magnetic measurements, as well as electron spin resonance (ESR) spectra, were used to characterise the single-crystalline CuCr1.6V0.4Se4 spinel and study the correlation between the negative magnetoresistance effect and magnon excitations. We established the ferromagnetic order below the Curie temperature T C ≈ 193 K, a p-type semiconducting behaviour, the ESR change from paramagnetic to ferromagnetic resonance at T C, a large ESR linewidth value and its temperature dependence in the paramagnetic region. Electrical studies revealed negative magnetoresistance, which can be enhanced with increasing magnetic field and decreasing temperature, while a detailed thermopower analysis showed magnon excitations at low temperatures. Spin–phonon coupling is explained within the framework of a complex model of paramagnetic relaxation processes as a several-stage relaxation process in which the V3+ ions, the exchange subsystem and conduction electron subsystem act as the intermediate reservoirs.  相似文献   
106.
We report on the glass-forming ability and devitrification behavior of Zr60Cu30Al10, Zr60Cu25Al10Fe5 and Zr62.5Cu22.5Al10Fe5 bulk glass-forming alloys on heating. The effect of Fe addition on the structure of Zr–Al–Cu alloys is also discussed. Crystallization kinetics and structural changes in the glassy alloys were studied using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. The results indicate that good glass-formers, such as Zr62.5Cu22.5Al10Fe5, are located somewhat beyond the equilibrium eutectic point. Possible phase separation in the supercooled liquid on heating and electron beam-induced in situ crystallization are observed and discussed.  相似文献   
107.
The paper describes a novel transmission electron microscopy (TEM) experiment with in situ ion irradiation designed to improve and validate a computer model. TEM thin foils of molybdenum were irradiated in situ by 1?MeV Kr ions up to ~0.045 displacements per atom (dpa) at 80°C at three dose rates ?5?×?10?6, 5?×?10?5, and 5?×?10?4?dpa/s – at the Argonne IVEM-Tandem Facility. The low-dose experiments produced visible defect structure in dislocation loops, allowing accurate, quantitative measurements of defect number density and size distribution. Weak beam dark-field plane-view images were used to obtain defect density and size distribution as functions of foil thickness, dose, and dose rate. Diffraction contrast electron tomography was performed to image defect clusters through the foil thickness and measure their depth distribution. A spatially dependent cluster dynamic model was developed explicitly to model the damage by 1?MeV Kr ion irradiation in an Mo thin foil with temporal and spatial dependence of defect distribution. The set of quantitative data of visible defects was used to improve and validate the computer model. It was shown that the thin foil thickness is an important variable in determining the defect distribution. This additional spatial dimension allowed direct comparison between the model and experiments of defect structures. The defect loss to the surfaces in an irradiated thin foil was modeled successfully. TEM with in situ ion irradiation of Mo thin foils was also explicitly designed to compare with neutron irradiation data of the identical material that will be used to validate the model developed for thin foils.  相似文献   
108.
Y.Q. Chen  B. Wang  H.Q. Liu 《哲学杂志》2013,93(18):2269-2278
Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy were used to study the microstructure evolution of Al–Cu–Mg alloy during the initial stage of homogenization. It was found that two types of precipitation-free zones (PFZs) can form concurrently: one near grain boundaries and the other at the grain centres. Depth profile analyses of solute concentrations and dislocation-loop distributions strongly suggested that the formations of the two type of PFZs are different, due solely and exclusively to solute and vacancy depletion, respectively. A mechanism model was proposed to explain the concurrent formation of the two different type of PFZs during the initial stage of homogenization.  相似文献   
109.
Previous studies have revealed that dislocation structures in metals with medium-to-high stacking fault energy, depend on the grain orientation and therefore on the slip systems. In the present work, the dislocations in eight slip-plane-aligned geometrically necessary boundaries (GNBs) in three grains of near 45° ND rotated cube orientation in lightly rolled pure aluminium are characterized in great detail using transmission electron microscopy. Dislocations with all six Burgers vectors of the ½?1?1?0? type expected for fcc crystals were observed but dislocations from the four slip systems expected active dominate. The dislocations predicted inactive are primarily attributed to dislocation reactions in the boundary. Two main types of dislocation networks in the boundaries were identified: (1) a hexagonal network of the three dislocations in the slip plane with which the boundary was aligned; two of these come from the active slip systems, the third is attributed to dislocation reactions (2) a network of three dislocations from both of the active slip planes; two of these react to form Lomer locks. The results indicate a systematic boundary formation process for the GNBs. Redundant dislocations are not observed in significant densities.  相似文献   
110.
The microstructure of a Fe–Mn–Si–Al twinning-induced plasticity (TWIP) steel exhibiting remarkable work hardening rate under uniaxial tensile deformation was investigated using transmission electron microscopy to uncover the mechanism(s) controlling the nucleation and growth of the mechanically induced twins. The results show that the stair-rod cross-slip deviation mechanism is necessary for the formation of the twins, while large extrinsic stacking faults homogenously distributed within the grains could act as preferential sources for the activation of the deviation process. The influence of such features on the thickness and strength of the twins and the resulting mechanical behaviour is discussed and compared to similar works recently performed on Fe–Mn–C TWIP steels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号