首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   106篇
  国内免费   342篇
化学   694篇
晶体学   5篇
力学   618篇
综合类   43篇
数学   36篇
物理学   514篇
  2024年   10篇
  2023年   25篇
  2022年   64篇
  2021年   37篇
  2020年   55篇
  2019年   43篇
  2018年   37篇
  2017年   62篇
  2016年   65篇
  2015年   64篇
  2014年   65篇
  2013年   140篇
  2012年   78篇
  2011年   124篇
  2010年   87篇
  2009年   90篇
  2008年   97篇
  2007年   74篇
  2006年   103篇
  2005年   92篇
  2004年   64篇
  2003年   57篇
  2002年   58篇
  2001年   45篇
  2000年   36篇
  1999年   35篇
  1998年   39篇
  1997年   30篇
  1996年   33篇
  1995年   23篇
  1994年   17篇
  1993年   12篇
  1992年   12篇
  1991年   6篇
  1990年   9篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1978年   1篇
排序方式: 共有1910条查询结果,搜索用时 9 毫秒
71.
Iron oxides (haematite, maghemite, magnetite), (oxy)hydroxides (lepidocrocite), carbonates, as well as zinc carbonate and oxide, have been identified on corroded galvanized steel samples after corrosion accelerating tests in the laboratory and compared with those observed on samples taken from vehicles that have been in circulation for five years in severe weather conditions. Spectra recorded on the corroded parts are compared with synthesized compounds. (Hydroxy)carbonates are clearly evidenced on galvanized and phosphated steel sheets. Corrosion layers beneath the paint could be detected. White regions always correspond to a ZnO‐rich phase but maghemite (γ‐Fe2O3) and sometimes akaganite (β‐FeOOHCl) are observed at the centre (maroon) of very corroded spots. Maghemite is observed in strongly corroded regions. Goethite (α‐) and lepidocrocite (γ‐FeOOH) (and akaganite) are observed at the surface of less corroded regions of phosphate‐free galvanized steel and are absent for phosphate‐coated steel. Green rust is observed only on galvanized samples corroded in the laboratory. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
72.
This paper deals with the small-angle neutron scattering (SANS) investigation on solution-quenched PH13-8 Mo stainless steel. From the nature of the variation of the functionality of the profiles for varying specimen thickness and also from the transmission electron microscopy (TEM), it has been established that the small-angle scattering signal predominantly originates from the block-like metallic carbide precipitates in the specimen. The contribution due to double Bragg reflection is not significant in the present case. The single scattering profile has been extracted from the experimental profiles corresponding to different values of specimen thickness. In order to avoid complexity and non-uniqueness of the multi-parameter minimization for randomly oriented polydisperse block-like precipitate model, the data have been analyzed assuming randomly oriented polydisperse cylindrical particle model with a locked aspect ratio.  相似文献   
73.
Thin surface layers consisting of nano-crystalline and amorphous phases on the surface of stainless steel have been attained under the Nd:YAG pulsed laser irradiation. The phases and microstructures were investigated by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). The phase compositions of the surface determined by XRD were α-Fe (ferrite) and γ-Fe (austenite) or only γ-Fe in the near surface region on the bases of the different laser power densities. The nano-crystalline grains with sizes of 4-100 nm could result from high cooling rate and crystallization in amorphous region by homogeneous and heterogeneous nucleation. The formation of the amorphous phase was attributed to the higher cooling rates.  相似文献   
74.
Xiang Zhang  Mengke Liu 《哲学杂志》2019,99(9):1041-1056
Tin is a typical residual element in steel and mainly originates from Sn-containing complex iron ore and steel scrap. The segregation of Sn in steel is harmful to the performances of steel. In this paper, the micro-segregation of residual element Sn during the solidification process of boiler and pressure vessel steel by micro-segregation model was studied. The results showed that the micro-segregation degree of Sn reduces apparently with the increase of cooling rate and remarkably deteriorates during the solidification process. When the initial content of C is higher than 0.1%, it will cause the solidification transform of the solid phase converting from the ferrite phase to austenite phase and the significant increase in the micro-segregation degree of Sn. However, increasing the initial contents of Si, Mn, P and S separately has non-significant effects on the micro-segregation degree of Sn. In addition, the improvement of initial content of Sn will lead to the micro-segregation degree decrease of Sn and has an inapparent impact on zero strength temperature and zero ductility temperature of the boiler and pressure vessel steel.  相似文献   
75.
Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.  相似文献   
76.
Interaction of Nd:YAG laser, operating at 266 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage threshold was estimated to be 0.14 J/cm2. The steel surface modification was studied at the laser fluence of ∼1.0 J/cm2. The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) intensive damage of the target in the central zone of irradiated area; (ii) appearance of periodic surface structures at nano-level, with periodicity in agreement with the used wavelength; (iii) reduction of oxygen concentration in irradiated area; and (iv) development of plasma in front of the target. Generally, interaction of laser beam with AISI 1045 steel (at 266 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be modified in short times.  相似文献   
77.
The densification during selective laser melting (SLM) process is an important factor determining the final application of SLM-part. In the present work, the densifications under different processing conditions were investigated and the densification mechanisms were elucidated. It was found that the higher laser power, lower scan speed, narrower hatch spacing and thinner layer thickness could enable a much smoother melting surface and consequently a higher densification.The gas atomized powder possessed better densification than water atomized powder, due to the lower oxygen content and higher packing density of gas atomized powder. A large number of regular-shaped pores can be generated at a wider hatch spacing, even if the scanning track is continuous and wetted very well. The densification mechanisms were addressed and the methods for building dense metal parts were also proposed as follows: inhibiting the balling phenomenon, increasing the overlap ratio of scanning tracks and reducing the micro-cracks.  相似文献   
78.
利用甲醇-氢(CH3OH-H2)混合气体为气源,30nm厚的无定形硅为过渡层,借助于微波等离子体化学气相沉积(MWCVD)成功地将金刚石薄膜生长在不锈钢上,其最低生长温度可至420℃,并且甲醇-氢混合气体比传统的甲烷-氢(CH4-H2)更具优势,测试表明这种金刚石薄膜有希望作为耐磨层在工业上应用  相似文献   
79.
Ferritic steel with compositions 83.0Fe–13.5Cr–2.0Al–0.5Ti (alloy A), 79.0Fe–17.5Cr–2.0Al–0.5Ti (alloy B), 75.0Fe–21.5Cr–2.0Al–0.5Ti (alloy C) and 71.0Fe–25.5Cr–2.0Al–0.5Ti (alloy D) (all in wt%) each with a 1.0?wt% nano-Y2O3 dispersion were synthesized by mechanical alloying and consolidated by pulse plasma sintering at 600, 800 and 1000°C using a 75-MPa uniaxial pressure applied for 5?min and a 70-kA pulse current at 3?Hz pulse frequency. X-ray diffraction, scanning and transmission electron microscopy and energy disperse spectroscopy techniques have been used to characterize the microstructural and phase evolution of all the alloys at different stages of mechano-chemical synthesis and consolidation. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus were determined using a micro/nano-indenter and universal testing machine. All ferritic alloys recorded very high levels of compressive strength (850–2850?MPa), yield strength (500–1556?MPa), Young's modulus (175–250?GPa) and nanoindentation hardness (9.5–15.5?GPa), with up to 1–1.5 times greater strength than other oxide dispersion-strengthened ferritic steels (<1200?MPa). These extraordinary levels of mechanical properties can be attributed to the typical microstructure of uniform dispersion of 10–20-nm Y2Ti2O7 or Y2O3 particles in a high-alloy ferritic matrix.  相似文献   
80.
Abstract

The austenite microstructure evolution and softening processes have been studied in a 23Cr–6Ni–3Mo duplex stainless steel, comprising equal fractions of austenite and ferrite, deformed in uniaxial compression at 1000 °C using strain rates of 0.1 and 10 s?1. The texture and microstructure evolution within austenite was similar in character for both the strain rate used. The observed large-scale subdivision of austenite grains/islands into complex-shaped deformation bands, typically separated by relatively wide transition regions, has been attributed to the complex strain fields within this phase. Organised, self-screening microband arrays were locally present within austenite and displayed a crystallographic character for a wide range of austenite orientations. The microband boundaries were aligned with the traces of {1?1?1} slip planes containing slip systems having high, although not necessarily the highest possible, Schmid factors. The slightly lower mean intercept length and higher mean misorientation obtained for the sub-boundaries at the higher strain rate can be ascribed to the expected more restricted dynamic recovery processes compared to the low strain rate case. Dynamic recrystallisation within austenite was extremely limited and mainly occurred via the strain-induced migration of the distorted original twin boundaries, followed by the formation of multiple twinning chains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号