首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2015篇
  免费   97篇
  国内免费   157篇
化学   1949篇
晶体学   2篇
力学   38篇
综合类   4篇
数学   57篇
物理学   219篇
  2024年   4篇
  2023年   81篇
  2022年   348篇
  2021年   322篇
  2020年   169篇
  2019年   155篇
  2018年   72篇
  2017年   90篇
  2016年   91篇
  2015年   57篇
  2014年   51篇
  2013年   122篇
  2012年   64篇
  2011年   53篇
  2010年   55篇
  2009年   71篇
  2008年   51篇
  2007年   45篇
  2006年   50篇
  2005年   55篇
  2004年   44篇
  2003年   31篇
  2002年   22篇
  2001年   26篇
  2000年   27篇
  1999年   24篇
  1998年   19篇
  1997年   15篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1957年   1篇
排序方式: 共有2269条查询结果,搜索用时 171 毫秒
861.
在高分辨率(ΔE=115eV, Δp≈01a.u.)电子动量谱仪上获得了二乙酰分子(d iacetyl)最内价轨道4agg+4buu的电离能谱和动量谱的实验结果, 并用Hartree-Fock和密度泛函理论方法做了理论计算.实验结果与理论计算符合较好. 关键词: 二乙酰 内价轨道 电离能 电子动量谱  相似文献   
862.
采用多种光谱法及计算机模拟技术研究了298,303,310 K温度下,头孢他美酯(CFP)与胃蛋白酶(PEP)之间的结合机理。结果表明,CFP主要以非辐射能量转移的静态猝灭方式猝灭PEP的荧光,两者主要通过静电作用力结合,其结合率在310 K为74.73%~92.13%。采用同步荧光法和圆二色谱法研究CFP对PEP的反应,结果表明两者的结合诱导了PEP的构象变化,使PEP的内源荧光猝灭。采用计算机模拟CFP与PEP的对接,结果表明CFP结合在PEP的催化活性位点处,该结论与光谱法所得结果一致。利用CFP对PEP的荧光猝灭反应,可以实现对实际药品中CFP含量的快速测定。  相似文献   
863.
TNBG-5602, a novel anticancer drug candidate, may induce the expression of PPARγ, causing targeted lipotoxicity in cancer tissues. In this study, the in vivo metabolism in rats, in vitro metabolism in recombinant cytochromes, molecular docking for the CYP binding site, and pharmacokinetics in rats were explored to better understand TNBG-5602′s in vivo fate and behavior. Thirteen metabolites were identified using a high-resolution mass spectrometry method, and metabolizing pathways of TNBG-5602 were proposed. Results suggest that TNBG-5602 could be metabolized by CYP450s, while CYP2D6 may play an important role in its in vivo metabolism. The main metabolizing sites of TNBG-5602 are the amino group on the side chain and rings A and E in the molecule. TNBG-5602 is a potent CYP2D6 inhibitor, with an IC50 value of 2.52 μM. An interaction responsible for its metabolism is formed by the NH on the side chain bonding with the ASP301 on the CYP2D6. The pharmacokinetics in rats after a single intravenous administration were fitted to a two-compartment model. The clearance was 0.022 L min−1, and the elimination half-life was 710.9 min. The distribution volume of the peripheral compartment was 1.88-fold that of the central compartment, while the K12 was 1.5-fold that of K21. In conclusion, these studies have not only revealed the metabolizing pathways of TNBG-5602 using in vivo and in vitro methodology, but they have also provided the pharmacokinetic characteristics of TNBG-5602 in rats. The results suggest that TNBG-5602 has good drug developability in terms of pharmacokinetic behaviors.  相似文献   
864.
Radiotherapy is a vital approach for brain tumor treatment. The standard treatment for glioblastoma (GB) is maximal surgical resection combined with radiotherapy and chemotherapy. However, the non-sensitivity of tumor cells in the hypoxic area of solid tumors to radiotherapy may cause radioresistance. Therefore, radiotherapy sensitizers that increase the oxygen concentration within the tumor are promising for increasing the effectiveness of radiation. Inspired by hemoglobin allosteric oxygen release regulators, a series of novel phenoxyacetic acid analogues were designed and synthesized. A numerical method was applied to determine the activity and safety of newly synthesized compounds. In vitro studies on the evaluation of red blood cells revealed that compounds 19c (∆P50 = 45.50 mmHg) and 19t (∆P50 = 44.38 mmHg) improve the oxygen-releasing property effectively compared to positive control efaproxiral (∆P50 = 36.40 mmHg). Preliminary safety evaluation revealed that 19c exhibited no cytotoxicity towards HEK293 and U87MG cells, while 19t was cytotoxic toward both cells with no selectivity. An in vivo activity assay confirmed that 19c exhibited a radiosensitization effect on orthotopically transplanted GB in mouse brains. Moreover, a pharmacokinetic study in rats showed that 19c was orally available.  相似文献   
865.
Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.  相似文献   
866.
This paper reports on a novel series of tyrosine kinase inhibitors (TKIs) potentially useful for the treatment of chronic myeloid leukemia (CML). The newly designed and synthesized compounds are structurally related to nilotinib (NIL), a second-generation oral TKI, and to a series of imatinib (IM)-based TKIs, previously reported by our research group, these latter characterized by a hybrid structure between TKIs and heme oxygenase-1 (HO-1) inhibitors. The enzyme HO-1 was selected as an additional target since it is overexpressed in many cases of drug resistance, including CML. The new derivatives 1a–j correctly tackle the chimeric protein BCR-ABL. Therefore, the inhibition of TK was comparable to or higher than NIL and IM for many novel compounds, while most of the new analogs showed only moderate potency against HO-1. Molecular docking studies revealed insights into the binding mode with BCR-ABL and HO-1, providing a structural explanation for the differential activity. Cytotoxicity on K562 CML cells, both NIL-sensitive and -resistant, was evaluated. Notably, some new compounds strongly reduced the viability of K562 sensitive cells.  相似文献   
867.
Data from the World Health Organisation show that the global incidence of dengue infection has risen drastically, with an estimated 400 million cases of dengue infection occurring annually. Despite this worrying trend, there is still no therapeutic treatment available. Herein, we investigated short peptide fragments with a varying total number of amino acid residues (peptide fragments) from previously reported dengue virus type 2 (DENV2) peptide-based inhibitors, DN58wt (GDSYIIIGVEPGQLKENWFKKGSSIGQMF), DN58opt (TWWCFYFCRRHHPFWFFYRHN), DS36wt (LITVNPIVTEKDSPVNIEAE), and DS36opt (RHWEQFYFRRRERKFWLFFW), aided by in silico approaches: peptide–protein molecular docking and 100 ns of molecular dynamics (MD) simulation via molecular mechanics using Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalised Born surface area (MMGBSA) methods. A library of 11,699 peptide fragments was generated, subjected to in silico calculation, and the candidates with the excellent binding affinity and shown to be stable in the DI-DIII binding pocket of DENV2 envelope (E) protein were determined. Selected peptides were synthesised using conventional Fmoc solid-phase peptide chemistry, purified by RP-HPLC, and characterised using LCMS. In vitro studies followed, to test for the peptides’ toxicity and efficacy in inhibiting the DENV2 growth cycle. Our studies identified the electrostatic interaction (from free energy calculation) to be the driving stabilising force for the E protein–peptide interactions. Five key E protein residues were also identified that had the most interactions with the peptides: (polar) LYS36, ASN37, and ARG350, and (nonpolar) LEU351 and VAL354; these residues might play crucial roles in the effective binding interactions. One of the peptide fragments, DN58opt_8-13 (PFWFFYRH), showed the best inhibitory activity, at about 63% DENV2 plague reduction, compared with no treatment. This correlates well with the in silico studies in which the peptide possessed the lowest binding energy (−9.0 kcal/mol) and was maintained steadily within the binding pocket of DENV2 E protein during the MD simulations. This study demonstrates the use of computational studies to expand research on lead optimisation of antiviral peptides, thus explaining the inhibitory potential of the designed peptides.  相似文献   
868.
Several diseases, including atherosclerosis, are characterized by inflammation, which is initiated by leukocyte migration to the inflamed lesion. Hence, genes implicated in the early stages of inflammation are potential therapeutic targets to effectively reduce atherogenesis. Algal-derived polysaccharides are one of the most promising sources for pharmaceutical application, although their mechanism of action is still poorly understood. The present study uses a computational method to anticipate the effect of fucoidan and alginate on interactions with adhesion molecules and chemokine, followed by an assessment of the cytotoxicity of the best-predicted bioactive compound for human monocytic THP-1 macrophages by lactate dehydrogenase and crystal violet assay. Moreover, an in vitro pharmacodynamics evaluation was performed. Molecular docking results indicate that fucoidan has a greater affinity for L-and E-selectin, monocyte chemoattractant protein 1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) as compared to alginate. Interestingly, there was no fucoidan cytotoxicity on THP-1 macrophages, even at 200 µg/mL for 24 h. The strong interaction between fucoidan and L-selectin in silico explained its ability to inhibit the THP-1 monocytes migration in vitro. MCP-1 and ICAM-1 expression levels in THP-1 macrophages treated with 50 µg/mL fucoidan for 24 h, followed by induction by IFN-γ, were shown to be significantly suppressed as eight- and four-fold changes, respectively, relative to cells treated only with IFN-γ. These results indicate that the electrostatic interaction of fucoidan improves its binding affinity to inflammatory markers in silico and reduces their expression in THP-1 cells in vitro, thus making fucoidan a good candidate to prevent inflammation.  相似文献   
869.
The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione (S,S,R-5) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound S,S,R-5 was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC50 values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule (S,S,R-5). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that S,S,R-5 is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.  相似文献   
870.
A variety of structurally different pyrimidines were synthesized. Elemental analysis, FT-IR, 1H NMR, and 13C NMR spectroscopy were used to confirm the chemical structures of all prepared compounds. The synthesized pyrimidines were screened against the growth of five human cancer cell lines (prostate carcinoma PC3, liver carcinoma HepG-2, human colon cancer HCT-116, human breast cancer MCF-7, human lung cancer A-549), and normal human lung fibroblasts (MRC-5) using MTT assay. Most of the screened pyrimidines have anti-proliferative activity on the growth of the PC3 cell line. Compounds 3b and 3d were more potent than the reference vinblastine sulfate (~2 to 3 × fold) and they can be considered promising leads for treating prostate cancer disease. Moreover, the screened compounds 3b, 3f, 3g, 3h, and 5 were assessed according to the values of their selectivity index (SI) and were found to be more selective and safer than vinblastine sulfate. Furthermore, using in silico computational tools, the physicochemical properties of all pyrimidine ligands were assessed, and the synthesized compounds fall within the criteria of RO5, thus having the potential to be orally bioavailable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号