首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2015篇
  免费   97篇
  国内免费   157篇
化学   1949篇
晶体学   2篇
力学   38篇
综合类   4篇
数学   57篇
物理学   219篇
  2024年   4篇
  2023年   81篇
  2022年   348篇
  2021年   322篇
  2020年   169篇
  2019年   155篇
  2018年   72篇
  2017年   90篇
  2016年   91篇
  2015年   57篇
  2014年   51篇
  2013年   122篇
  2012年   64篇
  2011年   53篇
  2010年   55篇
  2009年   71篇
  2008年   51篇
  2007年   45篇
  2006年   50篇
  2005年   55篇
  2004年   44篇
  2003年   31篇
  2002年   22篇
  2001年   26篇
  2000年   27篇
  1999年   24篇
  1998年   19篇
  1997年   15篇
  1996年   9篇
  1995年   8篇
  1994年   9篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1985年   2篇
  1984年   2篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1957年   1篇
排序方式: 共有2269条查询结果,搜索用时 109 毫秒
31.
Epothilones belong to a class of novel microtubule stabilizing and anti-mitotic agents, which have a paclitaxel-like mechanism of action. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model was built for epothilones by the method of comparative molecular field analysis (CoMFA) combined with the flexible docking technology. The docking CoMFA model gave a good cross-validated value of q2=0.784 with an optimized component of 6 and the conventional correlation coefficient of r^2=0.985. The statistical results show that the model has good ability to predict the activity of the studied compounds. At last, the docking CoMFA model was analyzed through contour maps complemented with MOLCAD-generated active site potential surface in the α,β-tubulin receptor, which can provide important information for the structure-based drug design.  相似文献   
32.
33.
喜树碱类抗肿瘤药物作用模式的柔性分子对接研究   总被引:3,自引:0,他引:3  
研究采用柔性分子对接技术,将15个喜树碱类化合物对接到拓扑异构酶I (Topo I)-DNA切割复合物中,从原子水平和分子力场角度阐明了喜树碱类抗肿瘤药 物与DNA,Topo I的相互作用机制。研究发现,喜树碱分子插入Topp I-DNA复合物 的切割位点,并与Asn722,Asp533,Lys532和Lys720形成氢键作用网络。定量构效 关系研究进一步表明喜树碱分子可以与Topo I-DNA切割复合物形成电荷迁移作用。 该对接模型系统解释了喜树碱类化合物的构效关系、定点突变等诸多实验事实,为 下一步设计、合成新型高效的喜树碱类衍生物打下了坚实基础。  相似文献   
34.
CombiDOCK: Structure-based combinatorial docking and library design   总被引:4,自引:0,他引:4  
We have developed a strategy for efficiently docking a large combinatorial library into a target receptor. For each scaffold orientation, all potential fragments are attached to the scaffold, their interactions with the receptor are individually scored and factorial combinations of fragments are constructed. To test its effectiveness, this approach is compared to two simple control algorithms. Our method is more efficient than the controls at selecting best scoring molecules and at selecting fragments for the construction of an exhaustive combinatorial library. We also carried out a retrospective analysis of the experimental results of a 10×10×10 exhaustive combinatorial library. An enrichment factor of approximately 4 was found for identifying the compounds in the library that are active at 330 nM.  相似文献   
35.
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug.  相似文献   
36.
R67 dihydrofolate reductase (DHFR) is a novel enzyme that confers resistance to the antibiotic trimethoprim. The crystal structure of R67 DHFR displays a toroidal structure with a central active-site pore. This homotetrameric protein exhibits 222 symmetry, with only a few residues from each chain contributing to the active site, so related sites must be used to bind both substrate (dihydrofolate) and cofactor (NADPH) in the productive R67 DHFR?NADPH?dihydrofolate complex. Whereas the site of folate binding has been partially resolved crystallographically, an interesting question remains: how can the highly symmetrical active site also bind and orient NADPH for catalysis? To model this ternary complex, we employed DOCK and SLIDE, two methods for docking flexible ligands into proteins using quite different algorithms. The bound pteridine ring of folate (Fol I) from the crystal structure of R67 DHFR was used as the basis for docking the nicotinamide-ribose-Pi (NMN) moiety of NADPH. NMN was positioned by both DOCK and SLIDE on the opposite side of the pore from Fol I, where it interacts with Fol I at the pore's center. Numerous residues serve dual roles in binding. For example, Gln 67 from both the B and D subunits has several contacts with the pteridine ring, while the same residue from the A and C subunits has several contacts with the nicotinamide ring. The residues involved in dual roles are generally amphipathic, allowing them to make both hydrophobic and hydrophilic contacts with the ligands. The result is a `hot spot' binding surface allowing the same residues to co-optimize the binding of two ligands, and orient them for catalysis.  相似文献   
37.
Designing proteins with novel protein/protein binding properties can be achieved by combining the tools that have been developed independently for protein docking and protein design. We describe here the sequence-independent generation of protein dimer orientations by protein docking for use as scaffolds in protein sequence design algorithms. To dock monomers into sequence-independent dimer conformations, we use a reduced representation in which the side chains are approximated by spheres with atomic radii derived from known C2 symmetry-related homodimers. The interfaces of C2-related homodimers are usually more hydrophobic and protein core-like than the interfaces of heterodimers; we parameterize the radii for docking against this feature to capture and recreate the spatial characteristics of a hydrophobic interface. A fast Fourier transform-based geometric recognition algorithm is used for docking the reduced representation protein models. The resulting docking algorithm successfully predicted the wild-type homodimer orientations in 65 out of 121 dimer test cases. The success rate increases to approximately 70% for the subset of molecules with large surface area burial in the interface relative to their chain length. Forty-five of the predictions exhibited less than 1 A C(alpha) RMSD compared to the native X-ray structures. The reduced protein representation therefore appears to be a reasonable approximation and can be used to position protein backbones in plausible orientations for homodimer design.  相似文献   
38.
We report the design and validation of a fast empirical function for scoring RNA-ligand interactions, and describe its implementation within RiboDock, a virtual screening system for automated flexible docking. Building on well-known protein-ligand scoring function foundations, features were added to describe the interactions of common RNA-binding functional groups that were not handled adequately by conventional terms, to disfavour non-complementary polar contacts, and to control non-specific charged interactions. The results of validation experiments against known structures of RNA-ligand complexes compare favourably with previously reported methods. Binding modes were well predicted in most cases and good discrimination was achieved between native and non-native ligands for each binding site, and between native and non-native binding sites for each ligand. Further evidence of the ability of the method to identify true RNA binders is provided by compound selection ('enrichment factor') experiments based around a series of HIV-1 TAR RNA-binding ligands. Significant enrichment in true binders was achieved amongst high scoring docking hits, even when selection was from a library of structurally related, positively charged molecules. Coupled with a semi-automated cavity detection algorithm for identification of putative ligand binding sites, also described here, the method is suitable for the screening of very large databases of molecules against RNA and RNA-protein interfaces, such as those presented by the bacterial ribosome.  相似文献   
39.
The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic extract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity towards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94, 19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside (5), myricetin-3-O-β-d-galactopyranoside (6) and myricetin-3’-O-β-d-glucopyranoside (7). Myricetin-3’-O-β-d-glucopyranoside (7) has been isolated for the first time from this genus. The chemical structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI–MS). These compounds have also been evaluated for their antiprotozoal activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1) enzyme was further explored as a potential target of quercetin and myricetin, using molecular modeling studies. This proposed mechanism assists in the exploration of new candidates for novel antitrypanosomal drugs.  相似文献   
40.
Several properties of propagating fronts of addition polymerization were studied. A power function could be fit to the velocity dependence on initiator concentration, but not with the exponents predicted by current models or in agreement with other published work. Bubbles from the volatile by-products of initiator decomposition were found to affect the front velocity and curvature. The front velocity for triethylene glycol dimethacrylate polymerization was found to depend linearly on temperature over a moderate range. The conversion of methacrylic acid in fronts varied greatly with initiator type and concentration. Benzoyl peroxide produced much lower conversion than t-butyl peroxide, but fronts with tBPO propagated slower. A dual initiator system of BPO and tBPO produced rapidly propagating fronts with good conversion but the contribution of each initiator to the velocity was not additive. The possibility of chain branching was considered. The apparent molecular weight distributions were very broad, often trimodal, and found to depend on initiator type and concentration as well as the tube diameter. The temperature profiles were measured and found to be very sharp for BPO and broader for tBPO but both had front temperatures in excess of 200°C, indicating a high ceiling temperature. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号