首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   24篇
  国内免费   14篇
化学   259篇
力学   6篇
综合类   10篇
数学   29篇
物理学   58篇
  2023年   9篇
  2022年   81篇
  2021年   57篇
  2020年   13篇
  2019年   18篇
  2018年   11篇
  2017年   5篇
  2016年   4篇
  2015年   13篇
  2014年   13篇
  2013年   13篇
  2012年   11篇
  2011年   10篇
  2010年   12篇
  2009年   16篇
  2008年   8篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   11篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1984年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有362条查询结果,搜索用时 15 毫秒
51.
Mosquito control protein from Bacillus thuringiensis gets inactivated with exposure to sunlight. To address this issue, the potential of synthetic and natural dye was investigated as sunlight protectants. Bt SV2 in absence of dyes when exposed to sunlight showed reduced effectiveness against the fourth instars of mosquito larvae. Whereas acriflavin, congo red and violacein were able to maintain 86.4%, 91.6% and 82.2% mosquito larvicidal efficacy of Bt SV2 against IVth instars larvae of Anopheles stephensi Meigen after exposure to sunlight. Similarly, beetroot dye, acriflavin, congo red and violacein maintained 98.4%, 97.1%, 90.8% and 70.7% larvicidal activities against Aedes aegypti Linnaeus after sunlight exposure. Prodigiosin was found to be the best photo-protectant by simultaneously protecting and enhancing Bt activity by 6.16% and 22.16% against A. stephensi and A. aegypti, respectively. Combination of dyes with Bt formulations can be a good strategy for mosquito control programmes in tropical and sub-tropical regions.  相似文献   
52.
Although the genetic component in the etiology of rheumatoid arthritis (RA) has been consistently suggested, many novel genetic loci remain to uncover. To identify RA risk loci, we performed a genome-wide association study (GWAS) with 100 RA cases and 600 controls using Affymetrix SNP array 5.0. The candidate risk locus (APOM gene) was re-sequenced to discover novel promoter and coding variants in a group of the subjects. Replication was performed with the independent case-control set comprising of 578 RAs and 711 controls. Through GWAS, we identified a novel SNP associated with RA at the APOM gene in the MHC class III region on 6p21.33 (rs805297, odds ratio (OR) = 2.28, P = 5.20 × 10-7). Three more polymorphisms were identified at the promoter region of the APOM by the re-sequencing. For the replication, we genotyped the four SNP loci in the independent case-control set. The association of rs805297 identified by GWAS was successfully replicated (OR = 1.40, P = 6.65 × 10-5). The association became more significant in the combined analysis of discovery and replication sets (OR = 1.56, P = 2.73 × 10-10). The individuals with the rs805297 risk allele (A) at the promoter region showed a significantly lower level of APOM expression compared with those with the protective allele (C) homozygote. In the logistic regressions by the phenotype status, the homozygote risk genotype (A/A) consistently showed higher ORs than the heterozygote one (A/C) for the phenotype-positive RAs. These results indicate that APOM promoter polymorphisms are significantly associated with the susceptibility to RA.  相似文献   
53.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key factor in several cardiovascular diseases, as it is responsible for the elevation of circulating low-density lipoprotein cholesterol (LDL-C) levels in blood plasma by direct interaction with the LDL receptor. The development of orally available drugs to inhibit this PCSK9-LDLR interaction is a highly desirable objective. Here, we report the synthesis of naturally occurring moracin compounds and their derivatives with a 2-arylbenzofuran motif to inhibit PCSK9 expression. In addition, we discuss a short approach involving the three-step synthesis of moracin C and a divergent method to obtain various analogs from one starting material. Among the tested derivatives, compound 7 (97.1%) was identified as a more potent inhibitor of PCSK9 expression in HepG2 cells than berberine (60.9%). These results provide a better understanding of the structure–activity relationships of moracin derivatives for the inhibition of PCSK9 expression in human hepatocytes.  相似文献   
54.
Cerebrovascular diseases (CVDs) are among the most serious diseases with high mortality and disability rates. The prevalent diagnosis and treatment methods of CVDs include imaging and interventional therapy. With the development of nanotechnology, large numbers of nanomaterials have been applied to the diagnosis and treatment of CVDs, mainly including carbon nanotubes, quantum dots, fullerenes, and dendrimers. In this review, the applications of nanomaterials in the field of diagnosis and treatment of CVDs, mainly including drug target delivery, imaging, therapy, endovascular treatment, and angiogenesis, are summarized. The applications of nanomaterials in the field of CVD are almost in the laboratory, and more effort is needed for clinical translation. The aim of this review is to provide useful information for future research and equipment development.  相似文献   
55.
Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1–9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1–9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.  相似文献   
56.
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.  相似文献   
57.
With technological advancements in the medicinal and pharmaceutical industries, numerous research studies have focused on the propolis produced by stingless bees (Meliponini tribe) and Apis mellifera honeybees as alternative complementary medicines for the potential treatment of various acute and chronic diseases. Propolis can be found in tropical and subtropical forests throughout the world. The composition of phytochemical constituents in propolis varies depending on the bee species, geographical location, botanical source, and environmental conditions. Typically, propolis contains lipid, beeswax, essential oils, pollen, and organic components. The latter include flavonoids, phenolic compounds, polyphenols, terpenes, terpenoids, coumarins, steroids, amino acids, and aromatic acids. The biologically active constituents of propolis, which include countless organic compounds such as artepillin C, caffeic acid, caffeic acid phenethyl ester, apigenin, chrysin, galangin, kaempferol, luteolin, genistein, naringin, pinocembrin, coumaric acid, and quercetin, have a broad spectrum of biological and therapeutic properties such as antidiabetic, anti-inflammatory, antioxidant, anticancer, rheumatoid arthritis, chronic obstruct pulmonary disorders, cardiovascular diseases, respiratory tract-related diseases, gastrointestinal disorders, as well as neuroprotective, immunomodulatory, and immuno-inflammatory agents. Therefore, this review aims to provide a summary of recent studies on the role of propolis, its constituents, its biologically active compounds, and their efficacy in the medicinal and pharmaceutical treatment of chronic diseases.  相似文献   
58.
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.  相似文献   
59.
Maintaining healthy skin is important for a healthy body. At present, skin diseases are numerous, representing a major health problem affecting all ages from neonates to the elderly worldwide. Many people may develop diseases that affect the skin, including cancer, herpes, and cellulitis. Long-term conventional treatment creates complicated disorders in vital organs of the body. It also imposes socioeconomic burdens on patients. Natural treatment is cheap and claimed to be safe. The use of plants is as old as mankind. Many medicinal plants and their parts are frequently used to treat these diseases, and they are also suitable raw materials for the production of new synthetic agents. A review of some plant families, viz., Fabaceae, Asteraceae, Lamiaceae, etc., used in the treatment of skin diseases is provided with their most common compounds and in silico studies that summarize the recent data that have been collected in this area.  相似文献   
60.
Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs), their hydroxylated derivatives, and trace elements with heart failure via their direct determination in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples including cases (heart failure patients) and controls (healthy donors), and the respective demographic data were collected. Significantly higher concentrations (p < 0.05) were observed in cases’ serum regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and fluoranthene being the most abundant (median of >50 μg L−1). Among the examined trace elements, As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases’ samples, with only Cr being significantly higher in controls. The potential impact of environmental factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements could be possibly related with heart failure development. Atmospheric degradation and smoking habit appeared to have a significant impact on the analytes’ serum concentrations. PCA–logistic regression analysis could possibly reveal common mechanisms among the analytes enhancing the hypothesis that they may pose a significant risk for CVD development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号