首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   4篇
  国内免费   7篇
化学   71篇
晶体学   11篇
力学   2篇
物理学   18篇
  2023年   1篇
  2022年   6篇
  2021年   7篇
  2020年   7篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
21.
Three conformational polymorphs of 3-(azidomethyl)benzoic acid, C8H7N3O2, are reported. All three structures maintain similar carboxylic acid dimers and π–π stacking. Crystal structure analysis and computational evaluations highlight the azidomethyl group as a source of conformational polymorphism, thus having potential implications in the design of solid-state reactions.  相似文献   
22.
Ab initio molecular orbital calculations (Hartree–Fock, HF and density functional theories, DFTs) have been carried out for SiO2 polymorphs coesite, low cristobalite, and α-quartz, in order to investigate the reliability of this method for predicting 29Si and 17O nuclear magnetic resonance (NMR) properties of silicates. Oxygen- and silicon-centered clusters consisting of one (1T) to three tetrahedral (3T) shells (one to four atomic shells), taken from real crystal structure, have been investigated. It is found that for reasonable predication of both the 29Si and 17O chemical shifts (δiSi and δiO), the minimum cluster is one that gives the correct second neighbors to the nucleus of interest. Both the δiSi and δiO have reached convergence with respect to cluster size at the OH-terminated two tetrahedral (2T) shell (three atomic shells around Si and four atomic shells around O) model. At convergence, the calculated δiSi values agree well (within ±1 ppm) with experimental data. The calculated 17O electric field gradient (EFG)-related parameters also agree with experimental data within experimental uncertainties. The calculation also reproduces small differences in δiO for O sites with similar tetrahedral connectivities, but shows deviations up to about 10 ppm in relative difference for O sites with different tetrahedral connectivities. The poor performance for the latter is mainly due to the approximations of the HF method. Our study thus suggests that the ab initio calculation method is a reliable mean for predicting 29Si and 17O NMR parameters for silicates. Such an approach should find application not only to well-ordered crystalline phases, but also to disordered materials, by combining with other techniques, such as the molecular dynamics simulation method.  相似文献   
23.
The purpose of this study is to investigate the mechanism of solid‐state polymorphic transition of p‐aminobenzoic acid (PABA) using in situ Raman spectroscopy measurement. The polymorphic transition experiments were conducted on a micro quartz vessel mounted on a microscope, hot and cold stage, under isothermal conditions. The temperature was precisely controlled by a standalone temperature controller equipped with liquid nitrogen cooling system. The Raman spectroscopy probe was positioned on the surface of the solid sample in the micro vessel. The polymorphic transition progression was in situ monitored and recorded by Raman spectroscopy. Based on the polymorphic transition rate resulted from the quantitative analysis of Raman spectra, the mechanism of solid‐state polymorphic transition of PABA was examined by various empirical kinetic models. An Arrhenius analysis was also performed to calculate activation energies from 134.7 kJ mol−1 to 137.7 kJ mol−1 for the transition. The results demonstrated that in situ Raman spectroscopy is a valuable and accurate technique to probe polymorphic transition process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
24.
张胜霞  刘杰  曾健  胡培培  翟鹏飞 《中国物理 B》2017,26(10):106102-106102
Two-layer monoclinic(2 M) muscovite mica sheets with a thickness of 12 μm are irradiated with Sn ions at room temperature with electronic energy loss( dE/dx)_e of 14.7 keV/nm. The ion fluence is varied between 1×10~(11) and1×10~(13) ions/cm~2. Structural transition in irradiated mica is investigated by x-ray diffraction(XRD). The main diffraction peaks shift to the high angles, and the inter-planar distance decreases due to swift heavy ion(SHI) irradiation. Dehydration takes place in mica during SHI irradiation and mica with one-layer monoclinic(1 M) structure is thought to be generated in 2 M mica after SHI irradiation. In addition, micro stress and damage cross section in irradiated mica are analyzed according to XRD data. High resolution transmission electron microscopy(HRTEM) is used on the irradiated mica to obtain the detailed information about the latent tracks and structural modifications directly. The latent track in mica presents an amorphous zone surrounded by strain contrast shell, which is associated with the residual stress in irradiated mica.  相似文献   
25.
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angledispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of40.9 GPa–73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→ bco + bcc→bcc upon compression to 108.9 GPa at room temperature.  相似文献   
26.
Understanding the crystallization of calcium carbonate is relevant in numerous fields like biomineralization, geology and industrial applications where calcium carbonate forms. In order to enhance the knowledge about the formation of calcium carbonate with focus on the vaterite polymorph, in this work calcium carbonate has been crystallized in aqueous solutions at temperatures from 5 °C to 90 °C. Special attention has been directed to higher temperatures for which the effect of the initial supersaturation on the resulting crystal morphologies and the onset of dendritic growth have been studied. In analogy to snow crystal formation, it has been found that in a certain temperature range hexagonal plate‐like crystals form at low supersaturation whereas dendritic patterns start to appear at higher supersaturation. The symmetrical branches characteristic for dendritic growth get less pronounced as the temperature is decreased. The results reported here related to the interdependence between supersaturation, crystal morphology and growth mechanisms, can be used in future works to predict particle formation and to design crystal architectures. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
27.
In our experiments, the thermodynamic effect of calcium binding proteins (CBP) on the growth of calcium carbonate (CaCO3) was studied in vitro. The CaCO3 crystals obtained in systems with and without CBP were characterized by scanning electron microscope (SEM), Fourier Transform Infrared spectrograph (FT‐IR) and powder X‐ray diffractometer (XRD). The kinetic process was studied by monitoring the conductivity and pH value, which revealed the obvious inducement effect of CBP on the CaCO3 crystals growth, and the possible formation mechanism of CaCO3 in CBP solution was discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
28.
The article describes the effect of degree of supersaturation, σ, on the crystallization of specific polymorphs of phenylbutazone from its methanolic solution at 20 °C. At low initial supersaturation, σ ≤ 2.0, the fraction of the metastable α polymorph in the crystallized product exceeds that of the δ polymorph, while at σ ≥ 5.0, the fraction of the stable δ polymorph increases in the crystallized product. The results are explained by the effect of supersaturation on the relative rates of nucleation and crystal growth of the polymorphs. Furthermore, the mechanism of nucleation and crystal growth also change with supersaturation. Supersaturated methanolic solutions of phenylbutazone exhibit a critical temperature at which the nucleation rates of the polymorphs decrease drastically. This effect is partly explained by the decreased mobility of phenylbutazone molecules at lower temperatures. Nucleation is most rapid when the crystallization temperature is close to the transition temperature, Tt(α ⟷ δ), between the polymorphs, α and δ. The nucleation rate decreases as the temperature difference between Tt(α ⟷ δ) and the crystallization temperature increases. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
29.
We present the results of an experimental and computational study of structural changes in two polymorphs of tolazamide {systematic name: 1‐[(azepan‐1‐ylamino)carbonyl]‐4‐methylbenzenesulfonamide}, C14H21N3O3S, on cooling to 100 K and reverse heating. No phase transitions occurred in this temperature range. The anisotropy of the thermal expansion was different for the two polymorphs and differed from that reported previously for the hydrostatic compression. The changes in different intermolecular contacts responsible for the strain anisotropy were analysed. Relative shortening of the contacts was related directly to their initial length and reversely to the steric density around them. Increasing steric density is likely to be the driving force for the conformational ordering of the azepane ring under compression.  相似文献   
30.
We describe a synthetic approach to prepare new luminescent silica‐based materials through the encapsulation of a neutral copper(I) complex inside the pores of mesoporous silica nanoparticles (MSN). The copper(I) complex is present, in the solid state, as two polymorphs, blue and yellow emissive, and in solution it shows a pale yellow color that is also mirrored by an emission in the yellow‐orange region of the electromagnetic spectrum. The X‐ray structures of single crystals have been obtained for both polymorphs. The complex encapsulation in MSN is achieved by its entrapment inside micelles followed by condensation of the silica source. Interestingly, the entrapment leads to the isolation of only one species. Indeed, the compound inside the MSN exhibits remarkable photophysical properties, showing an intense blue emission in solution and in the solid state. Powder X‐ray diffraction of the hybrid materials proves that the complex entrapped in MSN is indeed the blue polymorph. The confinement provides not only a method to isolate only one form of the complex, but also a certain rigidity, more stability of the system by protection of the complex from undesirable oxidation, leading to a highly emissive material possessing a photoluminescence quantum yield of 65%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号