X-ray photoelectron spectroscopy (XPS) was adopted for the analytical characterization of composite titanium dioxide–poly(vinylidenefluoride) (TiO2–PVDF) films developed for applications in the photocatalytic degradation of pollutants.
The composites were deposited on glass substrates by casting or spin coating from TiO2–PVDF suspensions in dimethylformamide (DMF). XPS data on the TiO2–PVDF surface composition were used to optimize preparation conditions (composition of the TiO2/PVDF suspension, deposition technique) in terms of titanium dioxide surface amount and film stability.
The use of spin-coating deposition and the increase of TiO2 amount in the DMF suspensions were found to improve the titanium surface content, although high TiO2/PVDF ratios led to film instability. PVDF–TiO2 films were also used in preliminary photocatalytic degradation tests on isoproturon, a phenylurea herbicide, under solar UV irradiation; the results were compared to direct photolysis to evaluate the catalytic efficiency of immobilized TiO2 and the role played by the PVDF film during the degradation process. 相似文献
From the recently determined structure of the delafossite YCuO2.5, we argue that the Cu-O network has nearly independent Δ chains but with different interactions between the s = 1/2 spins. Motivated by this observation, we study the Δ chain for different ratios of the base-base and base-vertex interactions,
Jbb/Jbv. By exact diagonalization and extrapolation, we show that the elementary excitation spectrum is the same for total spins
Stot = 0 and 1, but not for Stot = 2, and has a gap only in the interval 0.4874(1) ⩽ Jbb/Jbv ⩽ 1.53(1). The gap, known to be dispersionless for Jbb = Jbv, is found to acquire increasing k-dependence as Jbb/Jbv moves away from unity.
Received 29 October 2002 / Received in final form 14 January 2003 Published online 6 March 2003
RID="a"
ID="a"e-mail: sblundell@cea.fr
RID="b"
ID="b"e-mail: nunezreg@lps.u-psud.fr 相似文献
The adsorption behavior (capacity, density distribution and packing density) and the isosteric heat versus loading in a slit pore whose walls contain defective graphene layers are investigated in this paper. The defective wall is characterized by the extent and size of the defect. Simulation results obtained with the Grand Canonical Monte Carlo method reveal complex patterns of isosteric heat, and this complex behavior is a result of the interplay between three factors: (i) the surface heterogeneity (solid-fluid interaction, sites with varying degree of affinity), (ii) fluid-fluid interaction and (iii) the overlapping of potentials exerted by the two defective walls. We illustrate this with argon adsorption in pores of various sizes, and results obtained from the simulation agree qualitatively with the experimental data at 77 K on Saran microporous S600H and micro-mesoporous S84 charcoals of Beebe et al. [R.A. Beebe, B. Millard, J. Cynarski, J. Am. Chem. Soc. 75 (1953) 839]. The S600H was found to contain pores predominantly in the neighborhood of 7 Å with 30% of defect and a defective size of 2.84 Å. This is consistent with the argument made by Beebe et al. that this sample is a microporous solid and most pores can accommodate only one layer. The other sample, S84, has larger pores than S600H, and it is found that it has a wider pore size distribution and the pore width is centered at about 12 Å. 相似文献
The phase diagram is an interesting field of research, particularly in lyotropic liquid crystals (LLC). In this way, one of the most important phase diagrams of this LLC system was reported by Yu and Saupe. Two uniaxial (calamitic--N(C) and discotic--N(D)) and one biaxial nematic (N(B)) phases were determined by these authors. Furthermore, in this phase diagram the classical isotropic phase (I was observed at high temperature as well as a reentrant isotropic phase (I(RE)) which takes place at lower temperature. Later, this phase diagram was also studied by several authors and in all cases the I(RE)-N(C)-I phase transitions were not observed. In this work, we present a study of this phase diagram through digital image processing and refractometry optical techniques. The occurrence of these phase transitions is investigated and characterized. In addition, the order parameter is obtained based on the Vuks hypothesis from a particular point, in the range of the N(C) phase, where the absolute value of the optical birefringence (Deltan is maximum. 相似文献
The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2 °C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US + UV + O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP). 相似文献
Pure and samarium doped ZnO nanoparticles were synthesized by a sonochemical method and characterized by TEM, SEM, EDX, XRD, Pl, and DRS techniques. The average crystallite size of pure and Sm-doped ZnO nanoparticles was about 20 nm. The sonocatalytic activity of pure and Sm-doped ZnO nanoparticles was considered toward degradation of phenazopyridine as a model organic contaminant. The Sm-doped ZnO nanoparticles with Sm concentration of 0.4 mol% indicated a higher sonocatalytic activity (59%) than the pure ZnO (51%) and other Sm-doped ZnO nanoparticles. It was believed that Sm3+ ion with optimal concentration (0.4 mol%) can act as superficial trapping for electrons in the conduction band of ZnO and delayed the recombination of charge carriers. The influence of the nature and concentration of various oxidants, including periodate, hydrogen peroxide, peroxymonosulfate, and peroxydisulfate on the sonocatalytic activity of Sm-doped ZnO nanoparticles was studied. The influence of the oxidants concentration (0.2–1.4 g L−1) on the degradation rate was established by the 3D response surface and the 2D contour plots. The results demonstrated that the utilizing of oxidants in combination with Sm-doped ZnO resulting in rapid removal of contaminant, which can be referable to a dual role of oxidants; (i) scavenging the generated electrons in the conduction band of ZnO and (ii) creating highly reactive radical species under ultrasonic irradiation. It was found that the Sm-doped ZnO and periodate combination is the most efficient catalytic system under ultrasonic irradiation. 相似文献
We investigate the delocalization transition appearing in an exclusion process with two internal states, respectively on two
parallel lanes. At the transition, delocalized domain walls form in the density profiles of both internal states, in agreement
with a mean-field approach. Remarkably, the topology of the system’s phase diagram allows for the delocalization of a (localized)
domain wall when approaching the transition. We quantify the domain wall’s delocalization close to the transition by analytic
results obtained within the framework of the domain wall picture. Power law dependences of the domain wall width on the distance
to the delocalization transition as well as on the system size are uncovered, they agree with numerical results. 相似文献