首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3084篇
  免费   269篇
  国内免费   609篇
化学   3292篇
晶体学   39篇
力学   86篇
综合类   30篇
数学   37篇
物理学   478篇
  2024年   4篇
  2023年   62篇
  2022年   138篇
  2021年   157篇
  2020年   151篇
  2019年   119篇
  2018年   87篇
  2017年   140篇
  2016年   146篇
  2015年   130篇
  2014年   144篇
  2013年   309篇
  2012年   173篇
  2011年   170篇
  2010年   177篇
  2009年   188篇
  2008年   228篇
  2007年   201篇
  2006年   216篇
  2005年   161篇
  2004年   153篇
  2003年   107篇
  2002年   91篇
  2001年   76篇
  2000年   66篇
  1999年   60篇
  1998年   59篇
  1997年   47篇
  1996年   29篇
  1995年   35篇
  1994年   25篇
  1993年   31篇
  1992年   20篇
  1991年   7篇
  1990年   8篇
  1989年   13篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
排序方式: 共有3962条查询结果,搜索用时 171 毫秒
81.
活性炭纤维电极电解法处理墨绿B染料废水   总被引:1,自引:0,他引:1  
将铁丝缠绕在活性炭纤维(简称ACF)上制成电极,并在阴极鼓入空气,用电解生成的Fenton试剂处理墨绿B染料模拟废水.研究了电压、pH值、温度、空气流量、支持电解质的浓度等因素对染料脱色率的影响.结果表明,pH值越低,温度越高,处理效果越好,气流量的改变对于处理效果影响不大.室温时处理浓度为50mg·L-1的活性染料墨绿B,在实验电压为11V,中性条件下,无水硫酸钠的浓度为20g·L-1,通入空气流量为60L·min-1时,处理60min,色度去除率达到95%左右.55℃时,电解30min色度去除率就达到96%,60min时达到100%.  相似文献   
82.
The results of a kinetic investigation of the non-isothermal degradation and the isothermal degradation of the residual deformation under constant deflection for polychloroprene rubber are presented. A relationship was derived between the degree of non-isothermal conversion and the value of the investigated mechanical property. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
83.
用高分辨裂解气相色谱-质谱(HRPyGC-MS)考察了由对苯二眯腙和四种不同芳香族四酮合成的聚苯基不对称三嗪的热分解行为,鉴定了相应裂解产物的组成、分布及其与高分子结构的关系,并用热重法(TG)测定了它们的热分解反应动力学参数,提出了其热分解反应机理.  相似文献   
84.
Effect of irradiation temperature on the main-chain scission of poly (methyl methacrylate) (PMMA) caused by γ-irradiation was studied by means of gel permeation chromatography and ESR spectroscopy. Although no temperature dependency was observed on the scission efficiency for purified PMMA, the efficiency for crude or monomer-doped purified PMMA was decreased by decreasing the temperature below ca. 200 K. Above 200 K the efficiency was constant and did not depend on the purity of PMMA. ESR study of the irradiated PMMA revealed that the suppression of the scission below 200 K is induced by the addition of methyl methacrylate monomer to primary radical species, which otherwise cause the main-chain scission by warming the polymer above 200 K. The primary radical generated above 200 K immediately converts to the scission-type ? CH2 ? ?(CH3) COOCH3 radical through the β-scission of the polymer main chain, so that the efficiency of the scission does not depend on both the impurity and the irradiation temperature. © 1994 John Wiley & Sons, Inc.  相似文献   
85.
Within the frame of a screening program aimed at the isolation of amylolytic sporeformers, one strain with high amylolytic activity designated MIR-23 was selected. The microbial characterization was carried out by morphological and biochemical tests and, by means of statistical treatment, was identified asBacillus polymyxa. The organism could grow in acidic conditions (pH 5.0) on a starch medium and produce α-amylase, pullulanase, and α-glucosidase. Batch cultures showed the highest enzyme activities in the stationary phase. Pullulanase activity exhibited an optimal temperature of 52–57°C at pH 4.5–5.5. These properties would allow its use in the saccharification processes in the starch industries.  相似文献   
86.
A new approach for in situ fabrication of nanoscale fibrous chitosan membrane by biospecific degradation under physiological situation was studied. The chitosan binary blend membranes were fabricated by solvent casting of chitosan solution containing highly deacetylated chitosan (HDC) and moderately deacetylated chitosan (MDC) with different ratio. The biodegradation process was performed in PBS (pH 7.4) containing lysozyme at the temperature of 37 °C. Experimental results from weight loss, reducing sugar in surrounding media, FT-IR, X-ray diffraction, gel permeation chromatography (GPC) and SEM throughout the study showed that the biospecific degradation by lysozyme had removed MDC component selectively. When the ratio of MDC in the binary blend membranes amounted to 0.5, nanoscale domains of HDC and MDC were obtained, and thus a nanoscale fibrous structure was fabricated after biospecific degradation of MDC. This nanofibrous structure and the biospecific degradation of chitosan membranes can have potential advantages and interesting implications in tissue engineering and drug delivery.  相似文献   
87.
Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.  相似文献   
88.
The thermal decomposition of 4,4′-diaminodiphenylsulphone (DDS) was studied by thermogravimetry, differential scanning calorimetry and thermal volatilisation analysis. Solid residues, high-boiling and gaseous products of degradation were collected at each step of thermal decomposition and analysed by infrared spectroscopy and gas chromatography/mass spectrometry.

On programmed heating at normal pressure, DDS starts to evaporate at 250°C. Thermal decomposition, which probably proceeds through homolytic scission of the S-C bond is simultaneously observed. The resulting sulphonyl radicals provoke polymerisation and cross-linking of the solid residue which undergoes a limited degradation at 350°C with elimination of heteroatoms N and S as volatile moieties. Above 400°C, the residue undergoes a complex charring process leading to an aromatic char typical of carbonised aromatic polymers.  相似文献   

89.
Thermal degradation behavior of poly(4-hydroxybutyric acid) (P(4HB)) was investigated by thermogravimetric and pyrolysis-gas chromatography mass spectrometric analyses under both isothermal and non-isothermal conditions. Based on the thermogravimetric analysis, it was found that two distinct processes occurred at temperatures below and above 350 °C during the non-isothermal degradation of P(4HB) samples depending on both the molecular weight and the heating rate. From 1H NMR analysis of the residual P(4HB) molecules after isothermal degradations at different temperatures, it was confirmed that the ω-hydroxyl chain-end was remained unchanged in the residual P(4HB) molecules at temperatures below 300 °C, while the ω-chain-end of P(4HB) molecules was converted to 3-butenoyl units at temperatures above 300 °C. In contrast, the majority of the volatile products evolved during thermal degradation of P(4HB) was γ-butyrolactone regardless of the degradation temperature. From these results, it is concluded that during the thermal degradation of P(4HB), the selective formation of γ-butyrolactone via unzipping reaction from the ω-hydroxyl chain-end predominantly occurs at temperatures below 300 °C. At temperatures above 300 °C, both the cis-elimination reaction of 4HB unit and the formation of cyclic macromolecules of P(4HB) via intramolecular transesterification take place in addition to unzipping reaction from the ω-hydroxyl chain-end. Finally, the primary reaction of thermal degradation of P(4HB) at temperatures above 350 °C progresses by the cyclic rupture via intramolecular transesterification of P(4HB) molecules with a release of γ-butyrolactone as volatile product. Moreover, we carried out the thermal degradation tests for copolymer of 93 mol% of 4HB with 7 mol% of 3-hydroxybutyric acid (3HB) to examine the effect of 3HB units on thermal stability of P(4HB).  相似文献   
90.
The effect of process variables on uronic acids (UAs) and hexenuronic acids (HexAs) in the annual crop Arundo donax L. during ethanol–alkali pulping has been examined. A substantial loss of UA moieties (up to 90%) was observed by the end of pulping (target kappa number 18) performed with 25% NaOH and 40% EtOH (by volume) within the temperature range of 130–150 °C. At the same time, the progressive formation of HexA in pulp was detected from the early phases of delignification. The proportion of HexA in the residual UA of the final pulp was found to be 84%, indicating almost complete conversion of 4-O-methylglucuronic acid side groups (MeGlcA) of heteroxylan into HexA. The kinetics of UA degradation and HexA formation has been described in terms of three consecutive first-order reaction stages. The overall rate of UA degradation was one order higher than the rate of UA conversion into HexA. The values of apparent activation energy were estimated as 68.6 and 94.7 kJ mol–1, respectively. The reaction medium alkalinity was shown to be the controlling factor for UA and HexA stability during ethanol–alkali pulping. An increase in alkali charge from 5% to 35% (as NaOH) led to UA loss of 40%, but promoted HexA formation from 11.8 to 20.1 mol g–1. The addition of organic solvent to the alkaline pulping solution had a similar effect, and about 10% of UA was lost and the content of HexA increased from 6.9 to 10.9 mol g–1 with an increase in ethanol proportion in the liquor from 20% to 60%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号