首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3072篇
  免费   273篇
  国内免费   601篇
化学   3278篇
晶体学   39篇
力学   86篇
综合类   30篇
数学   37篇
物理学   476篇
  2024年   4篇
  2023年   62篇
  2022年   153篇
  2021年   150篇
  2020年   150篇
  2019年   119篇
  2018年   87篇
  2017年   138篇
  2016年   145篇
  2015年   127篇
  2014年   142篇
  2013年   306篇
  2012年   172篇
  2011年   170篇
  2010年   177篇
  2009年   187篇
  2008年   227篇
  2007年   201篇
  2006年   215篇
  2005年   160篇
  2004年   151篇
  2003年   106篇
  2002年   90篇
  2001年   75篇
  2000年   66篇
  1999年   60篇
  1998年   59篇
  1997年   47篇
  1996年   29篇
  1995年   33篇
  1994年   25篇
  1993年   31篇
  1992年   20篇
  1991年   7篇
  1990年   8篇
  1989年   13篇
  1988年   8篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
排序方式: 共有3946条查询结果,搜索用时 15 毫秒
181.
磁载光催化剂Fe3O4/C/TiO2的制备及对三氯苯酚的降解   总被引:1,自引:0,他引:1  
杨静  崔世海  练鸿振 《无机化学学报》2013,29(10):2043-2048
以FeCl3为铁源,葡萄糖为碳源,钛酸四丁酯为钛源,采用水热法制备了磁载光催化剂Fe3O4/C/TiO2,用TEM、EDX、VSM、XRD和IR对Fe3O4/C/TiO2的粒径、形貌和物相等进行了表征。研究了该催化剂对三氯苯酚的降解性能,探讨了其重复使用的可能性,用荧光光谱法推测了可能的反应机理。结果表明该材料结合了光催化与可再生的优点,1 g·L-1 Fe3O4/C/TiO2在18 W紫外灯下,50 min内可将三氯苯酚降解97.9%以上,6次循环使用后降解率仍保持在95.1%,降解过程中有羟基自由基生成。  相似文献   
182.
采用超声波辐照、臭氧氧化以及超声波辐照-臭氧氧化降解废水中的结晶紫;考察了废水初始pH、超声波功率和频率、氧气流量、反应温度等因素对降解效率的影响.结果表明:超声波和臭氧对结晶紫的降解具有协同作用;当废水溶液初始质量浓度为200mg.L-1、pH为10.0时,控制超声波功率和频率分别为100 W和30kHz,氧气流量为0.4L.min-1,反应温度为25℃,反应时间为90 min,则总有机碳(TOC)的去除率可达89.2%,相应的一级反应速率常数为2.38×10-2min-1.  相似文献   
183.
Form‐stable resorbable networks are prepared by gamma irradiating trimethylene carbonate (TMC)‐ and ε‐caprolactone (CL)‐based (co)polymer films. To evaluate their suitability for biomedical applications, their physical properties and erosion behavior are investigated. Homopolymer and copolymer networks that are amorphous at room temperature are flexible and rubbery with elastic moduli ranging from 1.8 ± 0.3 to 5.2 ± 0.4 MPa and permanent set values as low as 0.9% strain. The elastic moduli of the semicrystalline networks are higher and range from 61 ± 3 to 484 ± 34 MPa. The erosion behavior of (co)polymer networks is investigated in vitro using macrophage cultures, and in vivo by subcutaneous implantation in rats. In macrophage cultures, as well as upon implantation, a surface erosion process is observed for the amorphous (co)polymer networks, while an abrupt decrease in the rate and a change in the nature of the erosion process are observed with increasing crystallinity. These resorbable and form‐stable networks with tuneable properties may find application in a broad range of biomedical applications.

  相似文献   

184.
Abstract

Zinc dust serves as a reducing agent in the presence of ammonium formate and NaOH, and is highly effective for the hydrodebromination of decabromodiphenyl ether to give diphenyl ether and the less brominated diphenyl ethers.  相似文献   
185.
Calculations using density functional theory were performed to explore the mechanisms for atmospheric degradation of isopropyl methyl methylphosphonate (IMMP). The potential energy surface profiles for OH‐initiated reaction of IMMP were constructed, and all possible degradation channels were considered. Rate constants were further calculated using transition state theory. It was established from these calculations that H‐abstractions from alkyl groups have much lower energy barriers than substitutions of alkoxyl groups, and four possible H‐abstraction channels are competitive. Investigations into the secondary reactions under the presence of O2/NO were also performed. It is shown that O2 addition, reaction of peroxide radicals with NO to form RO radicals, and removal of ·RO are the major degradation pathways for alkyl radicals. Four selected products, CH3OP(O)(CH3)OC(O)CH3, CH3OP(O)(O)CH3, (CH3)2CHOP(O)(CH3)OH, and (CH3)2CHOP(O)(CH3)OCH?O, are predicted to be the major products in this study. © 2013 Wiley Periodicals, Inc.  相似文献   
186.
The purpose of this study was to evaluate the effects of hydrolytic degradation on the properties of a PLA hollow braid designed as a new concept of biodegradable prosthesis for the regeneration of tendons and ligaments. The main function of the braided material is to bear mechanical loads while it is being replaced by the newly-generated tissue. The kinetics of braided material degradation is thus an important factor in determining the success of the product. In order to study this mechanism, PLA braid was subjected to a 12-month degradation process at 37 °C in PBS at pH 7.4 (to simulate the human physiological medium) and to accelerated degradation for one month in pH 12 and pH 3 solutions. Degradation of the braid subjected to hydrolysis was evaluated by weight loss, molecular weight distribution, mechanical properties, and calorimetric and morphologic analyses. The weight loss in a basic medium reached 21%, versus no significant change in the other media. Average molecular weight was reduced by approximately 50% in the three media, with loss of mechanical properties in all cases. The morphological changes were more evident in the PLA degraded in the basic medium. The crystallinity of the material increased at the first stages of degradation, regardless of the medium used.  相似文献   
187.
A profluorescent nitroxide possessing an isoindoline nitroxide moiety linked to a perylene fluorophore was developed to monitor radical mediated degradation of melamine-formaldehyde crosslinked polyester coil coatings in an industry standard accelerated weathering tester. Trapping of polyester-derived radicals (most likely C-radicals) that are generated during polymer degradation leads to fluorescent closed-shell alkoxy amines, which was used to obtain time-dependent degradation profiles to assess the relative stability of different polyesters towards weathering. The nitroxide probe couples excellent thermal stability and satisfactory photostability with high sensitivity and enables detection of free radical damage in polyesters under conditions that mimic exposure to the environment on a time scale of hours rather than months or years required by other testing methods. There are indications that the profluorescent nitroxide undergoes partial photo-degradation in the absence of polymer-derived radicals. Unexpectedly, it was also found that UV-induced fragmentation of the NO–C bond in closed-shell alkoxy amines leads to regeneration of the profluorescent nitroxide and the respective C-radical. The maximum fluorescence intensity that could be achieved with a given probe concentration is therefore not only determined by the amount of polyester radicals formed during accelerated weathering, but also by the light-driven side reactions of the profluorescent nitroxide and the corresponding alkoxy amine radical trapping products. Studies to determine the optimum probe concentration in the polymer matrix revealed that aggregation and re-absorption effects lowered the fluorescence intensity at higher concentrations of the profluorescent nitroxide, but too low probe concentrations, where these effects would be avoided, were not sufficient to trap the amount of polyester radicals formed upon weathering. The optimized experimental conditions were used to assess the impact of temperature and UV irradiance on polymer degradation during accelerated weathering.  相似文献   
188.
Fullerene (C60)/high density polyethylene (HDPE) composites were studied in order to understand for their behaviors on thermal and thermo-oxidative degradation. Under different atmosphere, the influences of C60 on the thermal stability of HDPE are different. Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) demonstrate that in N2 the addition of C60 increases the onset decomposition temperature by about 10 °C with more heavy compounds (more than 34 carbon). Also the thermal stability of HDPE in air is remarkably improved with the addition of C60. When the content of C60 is 2.5 wt% the onset decomposition temperature increases by about 91 °C. The results of viscoelastic behavior and gel content reveal that C60 can trap the alkyl radicals and alkyl peroxide radicals to inhibit hydrogen abstraction to suppress the chain scission and preserve the long chain structure. However, in the absence of C60 or with low C60 concentration, hydrogen abstraction occurs, resulting in the formation of a series of alkyl radicals and alkyl peroxide radicals, which accelerates the chain scission and plays a leading role in the thermal oxidative degradation.  相似文献   
189.
Thermal oxidative degradation of additive-free polypropylene pellets heated isothermally in dry air at 150 and 180 °C (below and above the melting point of 163 °C) was investigated by multichannel Fourier-transform chemiluminescence spectroscopy. The initial peak wavelength of chemiluminescence emission at 490 nm remained constant during the early stages of thermal degradation, but new emissions developed with time in the red spectral region over an extended oxidation period. The time-dependent luminescence spectra were deconvoluted into three emission bands by least-squares fitting using Gaussian curves. We concluded that at least three groups of luminescent species (luminophores), having different conjugation lengths, were generated by thermal oxidation over extended periods and show luminescence around 490, 660, and 740 nm.  相似文献   
190.
Nylon 6.6 containing 13C isotopic labels at specific positions along the macromolecular backbone has been subjected to extensive thermal-oxidative aging at 138 °C for time periods up to 243 days. In complementary experiments, unlabeled Nylon 6.6 was subjected to the same aging conditions under an atmosphere of 18O2. Volatile organic degradation products were analyzed by cryofocusing gas chromatography mass spectrometry (cryo-GC/MS) to identify the isotopic labeling. The labeling results, combined with basic considerations of free radical reaction chemistry, provided insights to the origin of degradation species, with respect to the macromolecular structure. A number of inferences on chemical mechanisms were drawn, based on 1) the presence (or absence) of the isotopic labels in the various products, 2) the location of the isotope within the product molecule, and 3) the relative abundance of products as indicated by large differences in peak intensities in the gas chromatogram. The overall degradation results can be understood in terms of free radical pathways originating from initial attacks on three different positions along the nylon chain which include hydrogen abstraction from: the (CH2) group adjacent to the nitrogen atom, at the (CH2) adjacent the carbonyl group, and direct radical attack on the carbonyl. Understanding the pathways which lead to Nylon 6.6 degradation ultimately provides new insight into changes that can be leveraged to detect and reduce early aging and minimize problems associated with material degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号