首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3985篇
  免费   815篇
  国内免费   336篇
化学   2557篇
晶体学   144篇
力学   416篇
综合类   66篇
数学   469篇
物理学   1484篇
  2024年   14篇
  2023年   70篇
  2022年   200篇
  2021年   206篇
  2020年   259篇
  2019年   200篇
  2018年   175篇
  2017年   176篇
  2016年   250篇
  2015年   208篇
  2014年   238篇
  2013年   408篇
  2012年   226篇
  2011年   244篇
  2010年   193篇
  2009年   219篇
  2008年   227篇
  2007年   231篇
  2006年   209篇
  2005年   190篇
  2004年   178篇
  2003年   126篇
  2002年   87篇
  2001年   70篇
  2000年   70篇
  1999年   65篇
  1998年   72篇
  1997年   46篇
  1996年   51篇
  1995年   34篇
  1994年   20篇
  1993年   16篇
  1992年   18篇
  1991年   6篇
  1990年   12篇
  1989年   8篇
  1988年   20篇
  1987年   10篇
  1986年   28篇
  1985年   13篇
  1984年   12篇
  1983年   4篇
  1982年   4篇
  1980年   2篇
  1979年   8篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1971年   2篇
  1969年   1篇
排序方式: 共有5136条查询结果,搜索用时 31 毫秒
121.
《Comptes Rendus Physique》2018,19(6):433-450
We review recent theoretical developments on the stabilization of strongly correlated quantum fluids of light in driven-dissipative photonic devices through novel non-Markovian reservoir engineering techniques. This approach allows one to compensate losses and refill selectively the photonic population so as to sustain a desired steady state. It relies in particular on the use of a frequency-dependent incoherent pump, which can be implemented, e.g., via embedded two-level systems maintained at a strong inversion of population. As specific applications of these methods, we discuss the generation of Mott Insulator (MI) and Fractional Quantum Hall (FQH) states of light. As a first step, we present the case of a narrowband emission spectrum and show how this allows for the stabilization of MI and FQH states under the condition that the photonic states are relatively flat in energy. As soon as the photonic bandbwidth becomes comparable to the emission linewidth, important non-equilibrium signatures and entropy generation appear, and a novel dissipative phase transition from a Mott Insulating state toward a superfluid (SF) phase is unveiled. As a second step, we review a more advanced configuration based on reservoirs with a broadband frequency distribution, and we highlight the potential of this configuration for the quantum simulation of equilibrium quantum phases at zero temperature with tunable chemical potential. As a proof of principle, we establish the applicability of our scheme to the Bose–Hubbard model by confirming the presence of a perfect agreement with the ground-state predictions both in the Mott insulating and superfluid regions, and more generally in all parts of the parameter space. Future prospects towards the quantum simulation of more complex configurations are finally outlined, along with a discussion of our scheme as a concrete realization of quantum annealing.  相似文献   
122.
Abstract

For quantitative predictions and comparisons of microstructures that evolve during exposure to different radiation environments at elevated temperature one needs to develop methods that go beyond those based on the number of displacements per atom. The number of freely migrating defects that contribute to the microstructural development is far less than the total number of defects produced, as has been recognized for some time from measurements of radiation-induced segregation and of radiation-enhanced diffusion. Defect production in various neutron and ion irradiation environments is discussed in light of this fact. A method to calculate the fraction of freely migrating defects from the cluster size distribution of defects produced in cascades is suggested. The results are in good agreement with available data.  相似文献   
123.
The synthesis of poly(2‐oxazoline)s has been known since the 1960s. In the last two decades, they have risen in popularity thanks to improvements in their synthesis and the realization of their potential in the biomedical field due to their “stealth” properties, stimuli responsiveness, and tailorable properties. Even though the bulk of the research to date has been on linear forms of the polymer, they are also of interest for creating network structures due to the relatively easy introduction of reactive functional groups during synthesis that can be cross‐linked under a variety of conditions. This opinion article briefly reviews the history of poly(2‐oxazoline)s and examines the in vivo data on soluble poly(2‐oxazoline)s to date in an effort to predict how hydrogels may perform as implantable materials. This is followed by an overview of the most recent hydrogel synthesis methods and emerging applications, and is concluded with a section on the future directions predicted for these fascinating yet underutilized polymers.  相似文献   
124.
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318  相似文献   
125.
126.
Structural and optical properties of 1 at % Al-doped Zn1−xMgxO (x=0–8%) powders prepared by sol–gel method were systematically investigated by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible absorbance measurement, photoluminescence and Raman scattering spectra. All the powders retained the hexagonal wurtzite structure of ZnO. The band gap and near band emission energies determined from absorbance and photoluminescence spectra increased linearly with increasing Mg content, respectively, which implied that the Mg worked effectively on ZnO band gap engineering, irrespective of Al codoping. However, according to the PL and Raman scattering studies, for the sample of x=8%, the Al doping efficiency was decreased by higher Mg codoping. On the other hand, the effect of Mg codoping on photocatalytic degradation of methylene orange was explored experimentally. The substitution of Mg ions at Zn sites shifted the conduction band toward higher energies and then enhanced the photocatalytic activity, while the incorporation of interstitial Mg ions and decreased Al doping efficiency for higher Mg doping sample (x=8%) reduced the photocatalytic activity.  相似文献   
127.
Three cucurbit[6]uril (CB[6])-based polyrotaxanes [Cu(H2 C6N4)(CB[6])]Cl4·12H2O (1), [Co(H2 C6N4)(CB[6])]Cl4·14H2O (2) and [Ag(C6N4)(CB[6])]NO3·7H2O (3) are prepared using N,N′-bis(4-pyridylmethyl)-1,6-hexanediamine (C6N4) threading into CB[6]'s and metal ions' assistance. Single-crystal X-ray diffraction analyses reveal that polyrotaxanes 1, 2 and 3 all have 1D chain structure where 1 and 2 are linear and 3 has two shapes, linear and sawtooth, respectively. The effects of guest molecules, metal and counter ions as well as intermolecular weak interactions on the architectures of polyrotaxanes are discussed.  相似文献   
128.
Recent developments in computational chemistry and biology have come together in the “inside‐out” approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational “inside‐out” design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd‐sourced structure‐prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.  相似文献   
129.
缺陷调控是固体化学中的基本问题,也是决定材料性能的核心要素。基于缺陷调控的忆阻效应将给未来电子信息领域带来全新的变革。本文综述了无机固体材料中忆阻效应的研究进展,主要总结了忆阻效应的产生机制和忆阻材料的类型,结合原子级p-n结的相关工作,提出深入明确电场下缺陷迁移机制将是从无机固体化学角度研究忆阻效应的重要方向。  相似文献   
130.
钒液流电池是近年来发展最为迅猛的储能电池之一。隔膜作为钒电池的重要组成部分直接关系到钒电池的转化储能效率和使用寿命。本文综述了近年来钒电池用隔离膜的发展现状。全氟磺酸质子交换膜(Nafion膜)作为当前使用最为广泛的隔膜,从传导机理、交换机理和表面涂覆、交联、复合等表面改性技术方面入手做了深入的研究,并对比分析了各种改性方法的优缺点。对磺化的特种工程塑料为主的非氟耐热型质子交换膜和功能化的聚烯烃隔膜在钒电池中的当前进展做了全面总结,并对钒液流电池用电池隔膜的发展方向做了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号