首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   28篇
  国内免费   38篇
化学   169篇
综合类   1篇
物理学   27篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2013年   8篇
  2012年   11篇
  2011年   2篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   11篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1984年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
191.
192.
The synthesis of a geometrically constrained and near‐planar hexacyclic acridinium cyanine dye 9 is reported. When compared to its unlocked and non‐fluorescent monomethine cyanine dye analogue 3 , this photostable dye emits in the green area of the spectrum with a remarkable quantum yield close to unity in organic solvents and above 0.5 in water. A detailed steady‐state and time‐resolved spectroscopic study revealed that dye 9 forms emissive aggregates in water, which are responsible for a red‐shifted and broadened emission band and longer emission lifetime, τ≈33 compared to 6.5–7.0 ns for the monomeric dye. Dye 9 also binds strongly to DNA (both duplex and quadruplex) in its monomeric form and is very efficiently taken up by cells, in which it accumulates primarily into the nucleus.  相似文献   
193.
本文合成了两种新型中位取代近红外七甲川菁染料,采用核磁1 HN-MR和HRMS质谱对其结构进行了表征.并测试了染料在不同溶剂中的吸收光谱和荧光发射光谱性质.染料3b、3c在甲醇中的最大吸收波长和最大荧光发射波长分别为677/790nm和647/786nm,斯托克斯位移分别为113 nm、139nm.经过光降解实验测试得到3种染料3a—3c在乙醇中的光降解速率常数分别为1.21×10-3 mol/min、1.81×10-3 mol/min和2.14×10-3 mol/min.循环伏安法测得染料3a—3c的氧化电位分别在0.729V、0.624V和0.598V.光降解实验表明:七甲川菁染料中位亚甲基链上吸电基取代增强染料光稳定性,供电基取代减弱染料的光稳定性;供-吸电子能力强弱决定了染料的光稳定性强弱;同时中位氯原子取代与共轭链上的氢键作用有利于染料的稳定性增强,中位氮原子取代无法形成很好的氢键作用,不利于染料稳定性的提高.  相似文献   
194.
Cui H  He R  Wang J 《Talanta》2006,70(1):139-145
A high sensitive chromium speciation procedure based on spectrophotometric detection was developed by coupling flow injection on-line preconcentration with a catalytic indicator reaction. Chromium(VI) is retained on a mini-column packed with polystyrene anion exchange resin (strong basic 717 resin), which was afterwards eluted with a small volume of NaNO3 solution. The eluted Cr(VI) is then directed to catalyze the decoloration of alizarin cyanine green (ACG) in the presence of bromate as oxidizing reagent, and the absorbance change is proportional to the concentration of Cr(VI). With a sampling volume of 12 ml and a loading time of 120 s, an enrichment factor of 26.5 was achieved for the preconcentration. The most distinct feature of this procedure is characterized by its overall detection limit, i.e., 50 ng l−1, which is much superior to those achieved by FAAS, and comparable to those obtained by inductively coupled plasma mass spectrometry (ICPMS) and electrothermal atomic absorption spectrometry (ETAAS). The procedure was validated with a certified reference material. It was also applied to the speciation of chromium in a series of surface water samples.  相似文献   
195.
The intersystem crossing and isomerization dynamics of free-Cy3, Cy3-ssDNA, free-Cy5 and Cy5-ssDNA are obtained through simple analysis of rapid on/off blinking from single molecule fluorescence intensity time-traces and the fluorescence correlation spectroscopy (FCS). The on- and off-times observed in fluorescence time traces of single cyanine dyes are due to the formation of the triplet state and isomerization, where both the interaction with DNA and long central polymethine chain of cyanine dyes increase the barriers of isomerization, leading to long off-time. The results indicate that the single molecule fluorescence fluctuation together with the resulting second autocorrelation analysis are powerful methods for determining the triplet state and isomerization dynamics, which could be the simple techniques and complementary to other spectroscopic techniques, such as fluorescence decay measurement and laser flash photolysis to study the photophysical processes of complex molecules. Supported by the National Natural Science Foundation of China (Grant Nos. 20773139, 20833008 & 20825314), and State Key Project for Fundamental Research (Grant Nos. 2006CB806000 & 2007CB815200)  相似文献   
196.
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure–activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration–viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.  相似文献   
197.
Molecular probes based on the excited-state intramolecular proton-transfer (ESIPT) mechanism have emerged to be attractive candidates for various applications. Although the steady-state fluorescence mechanisms of these ESIPT-based probes have been reported extensively, less information is available about the fluorescence lifetime characteristics of newly developed NIR-emitting dyes. In this study, four NIR-emitting ESIPT dyes with different cyanine terminal groups were investigated to evaluate their fluorescence lifetime characteristics in a polar aprotic solvent such as CH2Cl2. By using the time-correlated single-photon counting (TCSPC) method, these ESIPT-based dyes revealed a two-component exponential decay (τ1 and τ2) in about 2–4 nanoseconds (ns). These two components could be related to the excited keto tautomers. With the aid of model compounds (5 and 6) and low-temperature fluorescence spectroscopy (at −189 ℃), this study identified the intramolecular charge transfer (ICT) as one of the major factors that influenced the τ values. The results of this study also revealed that both fluorescence lifetimes and fractional contributions of each component were significantly affected by the probe structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号