首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   9篇
化学   213篇
晶体学   1篇
力学   25篇
综合类   1篇
数学   46篇
物理学   25篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   12篇
  2013年   18篇
  2012年   32篇
  2011年   11篇
  2010年   14篇
  2009年   16篇
  2008年   9篇
  2007年   25篇
  2006年   18篇
  2005年   19篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   9篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有311条查询结果,搜索用时 265 毫秒
41.
In the context of convex analysis, macro-hybrid variational formulations of constrained boundary value problems are presented. Monotone mixed variational inclusions are macro-hybridized on the basis of nonoverlapping domain decompositions, and corresponding three-field versions are derived. Then, for regularization purposes, augmented formulations are established via preconditioned exact penalizations and expressed in terms of proximation operators. Optimization interpretations are given for potential problems, recovering the classic two- and three-field augmented Lagrangian formulations. Furthermore, associated parallel two- and three-field proximal-point algorithms are discussed for numerical resolution of finite element discretizations. Applications to dual mixed variational formulations of problems from mechanics illustrate the theory.  相似文献   
42.
A method using high-performance liquid chromatography with diode array detection (HPLC-DAD) as a powerful separation technique has been developed for the simultaneous determination of the four flavonols rutin, quercetin, kaempferol and isorhamnetin in food supplements and pharmaceutical formulations. The chromatographic separation was achieved in 36?min using a Symmetry C18 column (250?×?3?mm; 5?µm) as the stationary phase and a mixture of methanol, acetonitrile, and pH 2.5 aqueous acetic acid as the mobile phase in gradient elution mode. The analytical wavelengths were 256?nm for rutin, quercetin and isorhamnetin, and 368?nm for kaempferol. An ultrasound-assisted extraction protocol was performed using methanol as solvent. The detection and quantification limits were lower than 0.03?µg mL?1 and 0.08?µg mL?1, respectively. The inter-day and intra-day precisions were less than 4.8 and 5.1%, respectively, and the average recoveries were in the range from 96 to 107%. The method was applied for the determination of the studied flavonols in food supplements and pharmaceutical preparations. The satisfactory recovery values demonstrate the potential of the developed method for the determination of the analytes in these samples. In addition, the method is suitable for routine quality control due its ease of operation.  相似文献   
43.
A sodium dodecylsulfate‐doped polypyrrole (SDS‐PPy) film was elaborated on glassy carbon electrode (GCE) by an electrodeposition method in phosphate buffer solution (pH 2.0) containing pyrrole (Py) and sodium dodecyl sulfate (SDS). SDS‐PPy/GCE was used for the construction of sensor, which showed excellent electrochemical response for the detection of ondansetron (OND) compared to conventional PPy. The application of the square wave (SW), with the adsorptive accumulation, indicates a maximum response at 1.33 V in H2SO4 (0.5 M). The influence of experimental parameters on determination of OND is discussed. The adsorptive stripping technique showed to be more sensitive, giving responses twice as big as those of non‐accumulated OND. The substantial improvement of response permits the development of an electroanalytical technique with a linear concentration in the range (1.0–80 μM), low detection (0.09 μM), and quantification limits (0.3 μM), and acceptable relative standard deviations of repeatability (0.59 %), and reproducibility (1.51 %). Consequently, this electrode is promising candidate for an accurate electroanalytical determination of OND in pharmaceutical samples with high sensitivity and selectivity, good accuracy and precision. The electrooxidation of OND at SDS‐PPy/GCE at various temperatures were studied by cyclic voltammetry to evaluate both the kinetic (ks and Ea) and thermodynamic (ΔG*, ΔH* and ΔS*) parameters.  相似文献   
44.
An analytical method is presented for the determination of paraben preservatives in semisolid cream samples by matrix solid‐phase dispersion combined with supramolecular solvent‐based microextraction. Due to the oily and sticky nature of the sample matrix, parabens were first extracted from the samples by matrix solid‐phase dispersion using silica as sorbent material with a clean‐up performed with tetrahydrofuran in the elution step. The eluate (500 μL), 1‐decanol (120 μL), and water (4.4 mL) were then mixed in a polyethylene pipette to form supramolecular solvent. Finally, the analytes in the supramolecular solvent were separated and determined by liquid chromatography with ultraviolet detection. Under optimal extraction conditions, the extraction recoveries of the studied compounds were obtained in the range of 63–83%. The limits of detection for the analytes were between 0.03 and 0.04 μg/g. The precision of the method varied between 4.0–6.7 (intraday) and 6.2–7.9% (interday). Finally, the optimized procedure was applied to the determination of the target preservatives in a variety of cream samples (diaper rash, skin allergy, face and hand moisturizing) with satisfactory recoveries (86–102%).  相似文献   
45.
This study was undertaken to investigate whether an additional column clean-up procedure can affect the accuracy of an analytical method developed for the determination of imidacloprid residues in Chinese cabbage. Thereafter, the residue levels and the degradation rates of imidacloprid were investigated in experimental Chinese cabbage plots after treatment with two different commercial formulations: emulsifiable concentrate (EC) and wettable powder (WP). The analyte was determined using high-performance liquid chromatography-ultraviolet detection (HPLC-UVD) and confirmed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) in the select ion-monitoring mode. The mean recoveries ranged from 75.34 to 98.00% and 96.95 to 100.97%, with relative standard deviations of 0.86-4.14 and 1.22-3.52%, in samples treated with and without additional column clean-up procedures, respectively. The minimum detectable amount of imidacloprid was 4 ng, while the limits of detection and quantitation were 0.2 and 0.5 ppm, respectively. The degradation of pesticide was monitored throughout a period of 13 days under greenhouse conditions. Although the behaviors of the EC and WP formulations appear to be similar, the absolute residue levels obtained with EC and WP treatments differed slightly. When imidacloprid formulations were applied (as foliar treatments) according to the recommended rate, the final residues (13 days post-treatment) in Chinese cabbage were much lower than the maximum residue limit (MRL = 3.5 ppm) established by the Korean Food and Drug Administration. Taken together, our study suggests that the analysis of imidacloprid can be performed without an additional column clean-up procedure, and the decline curve and the residue levels in Chinese cabbage could change if the same active ingredient is used in different formulations.  相似文献   
46.
Clarithromycin is a very important macrolide antibiotic used to treat bacterial infections in human and veterinary medicine. This study reports the development and validation of cost-effective, simple, precise, accurate, and robust high-performance liquid chromatography (HPLC) for the determination of clarithromycin (CLA) in tablets. Reversed-phase chromatography was conducted using a standard column at 55°C with ultraviolet detection at 215 nm. A mobile phase consisting of acetonitrile –2-methyl-2-propanol –potassium phosphate buffer was used at a flow rate of 1.0 mL/min. The proposed method displayed good linearity, precision, accuracy, robustness, and specificity. The present HPLC was compared with capillary electrophoresis and bioassay methods and the results indicated that there was no significant difference between these methods. Moreover, the obtained results demonstrated the validity of the isocratic HPLC, which allows reliable quantitation of CLA in pharmaceutical samples. Thus, it can be used as a substitute alternative methodology for the routine quality control of this medicine, in situations where other methods are less accessible in the laboratory.  相似文献   
47.
19F NMR spectroscopy was applied to the quantitative determination of fluoxetine enantiomers using different chiral recognition agents in pharmaceutical formulations. Several parameters affecting the enantioresolution including the type and concentration of chiral selector, concentration of fluoxetine and temperature were studied. The chiral selectors investigated are the cyclic oligosaccharides α-, β- and γ-cyclodextrin and a diamino derivative of methylated α-cyclodextrin (DAM-α-CD), linear polysaccharides (maltodextrin with dextrose equivalents of 4.0-7.0, 13.0-17.0 and 16.5-19.5) and the macrocyclic antibiotic vancomycin. Among the chiral selectors used, DAM-α-CD turned out to give the best resolution of the 19F NMR signals of (R)- and (S)-fluoxetine. The calibration curve was linear for (R)- and (S)-fluoxetine over the range 0.10-1.35 mg mL−1, the detection limits (S/N = 3) being 5.9 and 7.5 μg mL−1 for the pure solutions of (R)- and (S)-fluoxetine, respectively. The recovery studies performed on pharmaceutical samples ranged from about 90 to 110% with relative standard deviations of <8%. The results showed that the proposed method is rapid, precise and accurate. Applying statistical Student's t-test revealed insignificant difference between the real and measured contents at the 95% confidence level.  相似文献   
48.
Depleted uranium (DU) is a by-product of the uranium enrichment process for nuclear fuel. According to the Commission Decision 2002/657/EC, a confirmatory method for the quantification of DU in freeze-dried fish was developed by isotope ratio dynamic reaction cell inductively coupled plasma-mass spectrometry (IR-DRC-ICP-MS). A preliminary study was performed to determine the following parameters: instrumental detection limit (IDL), isotopic ratio measurement limit (IRML), percentage of DU (P(DU)) in presence of natural uranium (NU) and limit of quantification (LoQ(DU)). The analyses were carried out by means of IR-DRC-ICP-MS. Ammonia was the reaction gas used for the dynamic reaction cell. In addition, a sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) was employed to calculate the within-laboratory reproducibility. For the confirmatory method the following parameters were determined: (a) trueness; (b) precision; (c) critical concentrations alpha and beta (CC(alpha), CC(beta)); (d) specificity; (e) stability. Trueness was assessed by using the recovery tests. The recovery and within-laboratory reproducibility were determined by fortifying the blank digested solution of dogfish tissue: six aliquots were fortified at 1, 1.5 and 2 times the LOQ(DU) with 25.0, 37.5 and 50.0 ng L(-1) or 4.16, 6.24, 8.32 microg kg(-1) with a recovery of -8.2, +9.5 and +9.6%, respectively and a within-laboratory reproducibility (three analytical run) of 15.5, 8.0 and 11.0%, respectively. The results for the decision limit and the detection capability were: CC(alpha) = 11.69 ng L(-1) and CC(beta) = 19.8 ng L(-1). The digested solutions resulted to be stable during testing time (60 days) and the method can be considered highly specific as well.  相似文献   
49.
A new symmetric formulation of the two-dimensional shallow water equations and a streamline upwind Petrov–Galerkin (SUPG) scheme are developed and tested. The symmetric formulation is constructed by means of a transformation of dependent variables derived from the relation for the total energy of the water column. This symmetric form is well suited to the SUPG approach as seen in analogous treatments of gas dynamics problems based on entropy variables. Particulars related to the construction of the upwind test functions and an appropriate discontinuity-capturing operator are included. A formal extension to the viscous, dissipative problem and a stability analysis are also presented. Numerical results for shallow water flow in a channel with (a) a step transition, (b) a curved wall transition and (c) a straight wall transition are compared with experimental and other computational results from the literature.  相似文献   
50.
A digital image-based flame emission spectrometric (DIB-FES) method for the quantitative chemical analysis is proposed here for the first time. The DIB-FES method employs a webcam to capture the digital images which are associated to a radiation emitted by the analyte into an air-butane flame. Since the detection by webcam is based on the RGB (red-green-blue) colour system, a novel mathematical model was developed in order to build DIB-FES analytical curves and estimate figures of merit for the proposed method. In this approach, each image is retrieved in the three R, G and B individual components and their values were used to define a position vector in RGB three-dimensional space. The norm of this vector is then adopted as the RGB-based value (analytical response) and it has revealed to be linearly related to the analyte concentration. The feasibility of the DIB-FES method is illustrated in three applications involving the determination of lithium, sodium and calcium in anti-depressive drug, physiological serum and water, respectively. In comparison with the traditional flame emission spectrometry (trad-FES), no statistic difference has been observed between the results by applying the paired t-test at the 95% confidence level. However, the DIB-FES method has offered the largest sensitivities and precision, as well as the smallest limits of detection and quantification for the three analytes. These advantageous characteristics are attributed to the trivariate nature of the detection by webcam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号