首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1927篇
  免费   224篇
  国内免费   130篇
化学   1933篇
晶体学   9篇
力学   16篇
综合类   23篇
数学   14篇
物理学   286篇
  2024年   5篇
  2023年   26篇
  2022年   32篇
  2021年   50篇
  2020年   51篇
  2019年   68篇
  2018年   44篇
  2017年   68篇
  2016年   76篇
  2015年   89篇
  2014年   85篇
  2013年   131篇
  2012年   158篇
  2011年   86篇
  2010年   91篇
  2009年   120篇
  2008年   107篇
  2007年   134篇
  2006年   120篇
  2005年   115篇
  2004年   113篇
  2003年   66篇
  2002年   53篇
  2001年   51篇
  2000年   36篇
  1999年   27篇
  1998年   44篇
  1997年   30篇
  1996年   24篇
  1995年   31篇
  1994年   18篇
  1993年   13篇
  1992年   13篇
  1991年   43篇
  1990年   29篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有2281条查询结果,搜索用时 15 毫秒
121.
Electroanalytical determination of heavy metals using stripping voltammetry is commonly employed and has many advantages over other methods. The sensitivity of the technique is greatly improved by employing different modified electrodes. Seven novel polymer-modified glassy carbon electrodes have been developed in this investigation for the trace analysis of heavy metals such as zinc, cadmium, lead, arsenic, and copper in formulated samples of waters by square wave stripping voltammetry. Very good responses have been observed for all the metals, while all the modified electrodes employed. The poly(3,4-ethylenedioxythiophene)-modified electrode has resulted in very low limit of detection (LOD) value. Comparison is made between literature results of LOD and the results obtained in this study. An independent atomic absorption spectroscopic analysis of the industrial wastewater sample was carried out and the results compared. The suitability of the method for practical application was ascertained by applying the procedure for the wastewater from a plating industry.  相似文献   
122.
123.
124.
125.
A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g−1 and an energy density value of 37 W h kg−1 are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g−1and energy density of 37 W h kg−1. This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors.  相似文献   
126.
In this work, an electrochemical DNA biosensor, based on a dual signal amplified strategy by employing a polyaniline film and gold nanoparticles as a sensor platform and enzyme‐linked as a label, for sensitive detection is presented. Firstly, polyaniline film and gold nanoparticles were progressively grown on graphite screen‐printed electrode surface via electropolymerization and electrochemical deposition, respectively. The sensor was characterized by scanning electron microscopy (SEM), cyclic voltammetry and impedance measurements. The polyaniline‐gold nanocomposite modified electrodes were firstly modified with a mixed monolayer of a 17‐mer thiol‐tethered DNA probe and a spacer thiol, 6‐mercapto‐1‐hexanol (MCH). An enzyme‐amplified detection scheme, based on the coupling of a streptavidin‐alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalyzed the hydrolysis of the electroinactive α‐naphthyl phosphate to α‐naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. In this way, the sensor coupled the unique electrical properties of polyaniline and gold nanoparticles (high surface area, fast heterogeneous electron transfer, chemical stability, and ease of miniaturisation) and enzymatic amplification. A linear response was obtained over a concentration range (0.2–10 nM). A detection limit of 0.1 nM was achieved.  相似文献   
127.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   
128.
We report here on plasticized ion‐selective poly(vinyl chloride) membranes with increased biocompatibility by means of a copper(I)‐catalyzed azide‐alkyne cycloaddition (‘click chemistry’) on the surface of finished membranes. We aimed for increasing the hydrophilicity of the surface and the application of NO releasing molecules. Employing the first principle, sodium selective membranes based on azide‐substituted PVC were modified with different length poly(ethylene glycol) (PEG) chains. For the second, cysteine groups were used as a nitrous oxide releasing substance. Surface modification was confirmed by Electrochemical Impedance Spectroscopy (EIS). Potentiometric measurements in undiluted whole blood showed an increased sensor stability in comparison to unmodified PVC. Membrane surfaces after 18 h contact with blood were analyzed with Scanning Electron Microscopy (SEM) and revealed a reduced level of blood cell adsorption on membranes modified with tetraethylene glycol (TEG) and PEGs. In contrast, cysteine modified membranes did not exhibit improved fouling resistance, suggesting that nitric oxide release by itself is not a sufficiently efficient mechanism.  相似文献   
129.
In the present work, a sensitive, facile and disposable sensing platform for trace analysis of heavy metal ions was developed at the Bi modified graphene‐poly(sodium 4‐styrenesulfonate) composite film screen printed electrode (GR/PSS/Bi/SPE). The GR/PSS/Bi/SPE improved sensitivity and linearity due to the functionalization of graphene with negatively charged PSS providing more absorbing sites. The detection limit of the GR/PSS/Bi/SPE is found to be 0.042 µg L?1 for Cd2+ and 0.089 µg L?1 for Pb2+ with linear responses of Cd2+ and Pb2+ in the range of 0.5–120 µg L?1. Finally, the practical application was confirmed in real water with satisfactory results.  相似文献   
130.
An efficient strategy for extracting and separating five lignans from Schisandra chinensis (Turcz.) Baill has been developed using supercritical fluid extraction (SFE) and high‐speed counter‐current chromatography (HSCCC) in the present study. First, the extraction was performed by a preparative SFE system under 15 MPa of pressure at 36°C for 4 h. Then, the SFE extract was successfully separated and purified by HSCCC with a two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water (6:4:5:5, 6:4:6:4, 6:4:8:2, v/v) in a stepwise elution mode. The fractions were analyzed by HPLC, and the chemical structures of the products were identified by ESI‐MS and 1H NMR spectroscopy. As a result, a total of 12.5 mg of schisandrin at 98.0% purity, 7.1 mg of gomisin A at 98.1% purity, 1.8 mg of schisantherin B at 93.3% purity, 4.4 mg of deoxyschisandrin at 92.9% purity, and 6.8 mg of γ‐schisandrin at 89.1% purity were obtained from 300 mg crude extract in a one‐step purification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号