首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8982篇
  免费   633篇
  国内免费   1178篇
化学   9361篇
晶体学   79篇
力学   97篇
综合类   48篇
数学   47篇
物理学   1161篇
  2024年   12篇
  2023年   56篇
  2022年   117篇
  2021年   183篇
  2020年   223篇
  2019年   198篇
  2018年   152篇
  2017年   190篇
  2016年   311篇
  2015年   272篇
  2014年   292篇
  2013年   845篇
  2012年   376篇
  2011年   434篇
  2010年   376篇
  2009年   456篇
  2008年   569篇
  2007年   636篇
  2006年   537篇
  2005年   527篇
  2004年   527篇
  2003年   427篇
  2002年   358篇
  2001年   303篇
  2000年   316篇
  1999年   289篇
  1998年   232篇
  1997年   269篇
  1996年   210篇
  1995年   200篇
  1994年   198篇
  1993年   182篇
  1992年   182篇
  1991年   79篇
  1990年   50篇
  1989年   39篇
  1988年   43篇
  1987年   20篇
  1986年   19篇
  1985年   17篇
  1984年   12篇
  1983年   5篇
  1982年   13篇
  1981年   10篇
  1980年   8篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1974年   3篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
41.
Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy).  相似文献   
42.
This article explores the synthesis of a novel methacrylic macromonomer with an amphiphilic character derived from poly(ethylene glycol) tert‐octylphenyl ether (MT) and its respective homopolymer. To know their reactivity in radical copolymerization reactions with methyl methacrylate (MMA), a model monomer (MTm) was synthesized to determine the reactivity ratios and compare them with the low molar fractions of copolymers of MT with MMA because they were difficult to isolate. They were rMTm = 0.97 and rMMA = 0.95. The compositional diagrams when representing the weight fraction of MT and MTm in the feed and the copolymer suggested that a clear correlation exists between the experimental points of the model monomer MTm and the macromonomer MT ones, suggesting that the length of the side poly(ethylene oxide) chain does not affect the reactivity of the methacrylic double bond in the prepared monomers for this type of polymerization reaction. The reactivity ratios of the copolymers have a tendency for the formation of random or Bernoullian copolymers. The glass‐transition temperatures (Tg's) of the prepared copolymers were determined by differential scanning calorimetry, deviated from the Fox equation, and discussed on the basis of treatments that consider the influence of the monomeric units along the copolymer chains, determining the Tg of the corresponding alternating dyads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1641–1649, 2003  相似文献   
43.
Polymerization of 2‐(diethylamino)ethyl methacrylate (DEAEMA) via homogeneous atom transfer radical polymerization under various reaction conditions is described. The effects of the initiators and solvents were examined. With 1,1,4,7,10,10‐hexamethyl triethylenetetramine/copper(I) chloride/p‐toluenesulfonyl chloride as the ligand/catalyst/initiator system in methanol, poly(DEAEMA) with a polydispersity index as low as 1.07 was synthesized. Kinetic studies demonstrated the polymerization was very well controlled and exhibited the living characteristic of the process. Well‐defined block copolymers of DEAEMA and tert‐butyl methacrylate (tBMA) were successfully synthesized. The copolymers could be synthesized with equally good results by starting with either p(DEAEMA) or p(tBMA) as the macroinitiators. However, only the macroinitiators terminated with chlorine should be used. The corresponding macroinitiators with bromine as a transferable group did not yield well‐defined copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2688–2695, 2003  相似文献   
44.
It has been shown that the kinetics of intramolecular processes and time-resolved spectra with allowance for the quantum beats of the resonant states of isomers or isolated subsystems of levels of one isomeric form can be described with the use of a molecular model interpreting the effect of beats as a nonradiative transition. We have obtained an expression for the nonradiative transition probability, which is directly proportional to the beat frequency and depends oscillatorily on time, thus modeling the effect of beats. The parameter of the molecular system model is the beat frequency directly related to the parameter characterizing the intramolecular interisomeric interactions (the corresponding nondiagonal element of the energy matrix) rather than the value of the nonradiative transition probability. The character of the change in the level populations and, accordingly, in the band intensities in the spectra in the proposed model is in good agreement with the experiment, including the fine structure of the time dependences — oscillations of the line intensities. In analyzing the temporal experiment with a high resolution, it is necessary to take into account the instrument function leading to quantitative and qualitative changes in the time dependences. The traditional model of nonradiative transitions with a constant probability value has a very limited range of applicability — very high beat frequencies compared to the probability of optical transitions.  相似文献   
45.
The solution behavior of new copolymers of methyl methacrylate and benzazole dyes emitting fluorescence because of an intramolecular proton‐transfer mechanism in the electronically excited state has been investigated by static light scattering, fluorescence spectroscopy, ultraviolet–visible, and gel permeation chromatography. In the dilute regime, with tetrahydrofuran (THF) and chloroform as solvents, the copolymers behave as typical polydisperse linear chains in good solvents. The analysis of the osmotic modulus for concentrated solutions in THF (c ≥ 60 g L?1) indicates the existence of an interchain association mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 341–350, 2003  相似文献   
46.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   
47.
A series of substituted N‐methylaniline‐blocked polyisocyanates based on 4,4′‐methylenebis(phenyl isocyanate) and poly(tetrahydrofuran) were prepared and characterized thoroughly with FTIR, 1H NMR, and 13C NMR spectroscopy methods. Compared with unsubstituted N‐methylaniline, a blocking agent with an electron‐releasing substituent at the para position took a shorter time, whereas those with an electron‐releasing substituent at the ortho position or an electron‐withdrawing substituent at the ortho and para positions took longer times for the blocking reaction. The thermal dissociation reactions of blocked polyisocyanates were carried out with an FTIR spectrophotometer attached to hot‐stage accessories under dynamic and isothermal conditions. The dynamic method was used to determine the deblocking temperature, and the isothermal method was used to calculate the deblocking kinetics and activation parameters. The cure times of blocked polyisocyanates with hydroxyl‐terminated polybutadiene were also determined. The deblocking temperatures, the results of cure‐time studies, and the kinetic parameters revealed that the thermal dissociation of the N‐methylaniline‐blocked polyisocyanates was retarded by electron‐donating substituents and facilitated by electron‐withdrawing substituents. The action of N‐methylanilines as blocking agents for isocyanate was explained by the formation of a four‐center, intramolecularly hydrogen‐bonded ring structure during the thermal dissociation of the blocked polyisocyanates. The formation of such a hydrogen‐bonded ring structure was confirmed and supported by variable‐temperature 1H NMR studies and entropy parameters, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1557–1570, 2007  相似文献   
48.
The kinetics of the formation of poly(carbosiloxane), as well as of alkyl-substituted poly(siloxane), by Karstedt's catalyst catalyzed hydrosilylation were investigated. Linear poly(carbosiloxane), poly[(1,1,3,3-tetramethyldisiloxanyl)ethylene], (PTMDSE), was obtained by hydrosilylation of 1,3-divinyltetramethyldisiloxane (DVTMDS) and 1,1,3,3-tetramethyldisiloxane (TMDS), while alkyl-substituted poly(siloxane), poly(methyldecylsiloxane), (PMDS), was synthesized by hydrosilylation of poly(methylhydrosiloxane) (PMHS) and 1-decene. To investigate the kinetics of PTMDSE formation, two series of experiments were performed at reaction temperatures ranging from 25 to 56 °C and with catalyst concentrations ranging from 7.0 × 10−6 to 3.1 × 10−5 mol Pt/mol CHCH2. A series of experiments was performed at reaction temperatures ranging from 28 to 48 °C, with catalyst concentrations of 7.0 ×10−6 mol of Pt per mol of CHCH2, when kinetics of PMDS formation was investigated. All reactions were carried out in bulk, with equimolar amounts of the reacting Si H and CHCH2 groups. The course of the reactions was monitored by following the disappearance of the Si H bands using quantitative infrared spectroscopy. The results obtained showed typical first order kinetics for the PTMDSE formation, consistent with the proposed reaction mechanism. In the case of PMDS an induction period occurred at lower reaction temperatures, but disappeared at 44 °C and the rate of Si H conversion also started to follow the first-order kinetics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2246–2258, 2007  相似文献   
49.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   
50.
Radical copolymerizations of electron‐deficient 2‐trifluoromethylacrylic (TFMA) monomers, such as 2‐trifluoromethylacrylic acid and t‐butyl 2‐trifluoromethylacrylate (TBTFMA), with electron‐rich norbornene derivatives and vinyl ethers with 2,2′‐azobisisobutyronitrile as the initiator were investigated in detail through the analysis of the kinetics in situ with 1H NMR and through the determination of the monomer reactivity ratios. The norbornene derivatives used in this study included bicyclo[2.2.1]hept‐2‐ene (norbornene) and 5‐(2‐trifluoromethyl‐1,1,1‐trifluoro‐2‐hydroxylpropyl)‐2‐norbornene. The vinyl ether monomers were ethyl vinyl ether, t‐butyl vinyl ether, and 3,4‐dihydro‐2‐H‐pyran. Vinylene carbonate was found to copolymerize with TBTFMA. Although none of the monomers underwent radical homopolymerization under normal conditions, they copolymerized readily, producing a copolymer containing 60–70 mol % TFMA. The copolymerization of the TFMA monomer with norbornenes and vinyl ethers deviated from the terminal model and could be described by the penultimate model. The copolymers of TFMA reported in this article were evaluated as chemical amplification resist polymers for the emerging field of 157‐nm lithography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1478–1505, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号