全文获取类型
收费全文 | 13327篇 |
免费 | 709篇 |
国内免费 | 1903篇 |
专业分类
化学 | 15151篇 |
晶体学 | 31篇 |
力学 | 60篇 |
综合类 | 41篇 |
数学 | 99篇 |
物理学 | 557篇 |
出版年
2024年 | 15篇 |
2023年 | 48篇 |
2022年 | 123篇 |
2021年 | 198篇 |
2020年 | 358篇 |
2019年 | 337篇 |
2018年 | 259篇 |
2017年 | 471篇 |
2016年 | 562篇 |
2015年 | 477篇 |
2014年 | 527篇 |
2013年 | 1034篇 |
2012年 | 735篇 |
2011年 | 776篇 |
2010年 | 762篇 |
2009年 | 824篇 |
2008年 | 944篇 |
2007年 | 980篇 |
2006年 | 861篇 |
2005年 | 795篇 |
2004年 | 779篇 |
2003年 | 575篇 |
2002年 | 523篇 |
2001年 | 405篇 |
2000年 | 374篇 |
1999年 | 328篇 |
1998年 | 291篇 |
1997年 | 268篇 |
1996年 | 239篇 |
1995年 | 199篇 |
1994年 | 213篇 |
1993年 | 197篇 |
1992年 | 162篇 |
1991年 | 73篇 |
1990年 | 60篇 |
1989年 | 43篇 |
1988年 | 39篇 |
1987年 | 21篇 |
1986年 | 12篇 |
1985年 | 10篇 |
1984年 | 8篇 |
1983年 | 7篇 |
1982年 | 10篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Hidenori Hanaoka Yuka Imamoto Takahiro Hino Tetsuya Kohno Kazunori Yanagi Yoshiaki Oda 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3668-3676
Chromium catalysts combined with phosphorous‐bridged bisphenoxy ligands were found to be highly active for ethylene polymerization. The most efficient catalyst precursor among them, generated by combining bis[3‐tert‐butyl‐5‐methyl‐2‐hydroxyphenyl](phenyl)phosphine hydrochloride ( 1a ) and CrCl3(THF)3, was characterized. X‐ray analysis of (3‐tert‐butyl‐5‐methyl‐2‐phenoxy)(3‐tert‐butyl‐5‐methyl‐ 2‐hydroxyphenyl)(phenyl)phosphine bis(tetrahydrofuran)chromium dichloride ( 6 ), obtained by the reaction of 1a and CrCl3(THF)3 in the presence of NaH, revealed a unique structure in which one phenol moiety of the bisphenol did not coordinate to the chromium center. Complex 6 showed higher activities than those observed in the in situ catalyst system. Polyethylene of various molecular weights was obtained with differing activators. The highest activity (113.5 kg mmol (cat)?1 h?1) was observed when TIBA/TB was used as a cocatalyst. A medium molecular weight polymer with narrow molecular weight distribution (Mw = 128,700, Mw/Mn = 1.8) was obtained using a 6 ‐TIBA/B(C6F5)3 system. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3668–3676, 2007 相似文献
82.
Brad M. Rosen Virgil Percec 《Journal of polymer science. Part A, Polymer chemistry》2007,45(21):4950-4964
Atom transfer radical polymerization (ATRP) and single electron‐transfer living radical polymerization (SET‐LRP) both utilize copper complexes of various oxidation states with N‐ligands to perform their respective activation and deactivation steps. Herein, we utilize DFT (B3YLP) methods to determine the preferred ligand‐binding geometries for Cu/N‐ligand complexes related to ATRP and SET‐LRP. We find that those ligands capable of achieving tetrahedral complexes with CuI and trigonal bipyramidal with axial halide complexes with [CuIIX]+ have higher energies of stabilization. We were able to correlate calculated preferential stabilization of [CuIIX]+ with those ligands that perform best in SET‐LRP. A crude calculation of energy of disproportionation revealed that the same preferential binding of [CuIIX]+ results in increased propensity for disproportionation. Finally, by examining the relative energies of the basic steps of ATRP and SET‐LRP, we were able to rationalize the transition from the ATRP mechanism to the SET‐LRP mechanism as we transition from typical nonpolar ATRP solvents to polar SET‐LRP solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4950–4964, 2007 相似文献
83.
Hoang The Ban Kei Nishii Yasuo Tsunogae Takeshi Shiono 《Journal of polymer science. Part A, Polymer chemistry》2007,45(13):2765-2773
This article reports a synthetic method for a norbornene–ethylene–styrene (N‐E‐S) terpolymer, which has not been well investigated so far, via incorporation of styrene (S) into vinyl‐type norbornene–ethylene (N‐E) copolymers catalyzed by a substituted ansa‐fluorenylamidodimethyltitanium [Me2Si(3,6‐tBu2Flu)(tBuN)]TiMe2 catalyst ( I ) activated with a [Ph3C][B(C6F5)4]/Al(iBu)3 cocatalyst at room temperature in toluene. The resulting terpolymerization product contained the targeted N‐E‐S terpolymer and the contaminated homopolymers, which were then able to be completely removed by solvent fractionation techniques. While homopolystyrene was easily extracted by fractionation with methylethylketone as a soluble part, homopolyethylene and a trace amount of homopolynorbornene could be perfectly separated by fractionation with chloroform as insoluble parts. The detail characterizations of a chloroform‐soluble polymer with gel permeation chromatography, nuclear magnetic resonance, and differential scanning calorimetry analyses proved that it contained a true N‐E‐S terpolymer with long N‐E sequences incorporated with isolated or short styrene sequences. The homogeneity of the morphology together with a single glass transition temperature that proportionally decreased with the increase of the styrene contents indicated that the N‐E‐S terpolymer obtained in this work is a random polymer with an amorphous structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2765–2773, 2007 相似文献
84.
Kan‐Yi Pu Yi Chen Xiao‐Ying Qi Chun‐Yang Qin Qing‐Quan Chen Hong‐Yu Wang Yun Deng Qu‐Li Fan Yan‐Qin Huang Shu‐Juan Liu Wei Wei Bo Peng Wei Huang 《Journal of polymer science. Part A, Polymer chemistry》2007,45(16):3776-3787
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007 相似文献
85.
Rodrigo París Jos Luis de la Fuente 《Journal of polymer science. Part A, Polymer chemistry》2006,44(18):5304-5315
Functional spontaneous gradient copolymers of allyl methacrylate (A) and butyl acrylate (B) were synthesized via atom transfer radical polymerization. The copolymerization reactions were carried out in toluene solutions at 100 °C with methyl 2‐bromopropionate as the initiator and copper bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst system. Different aspects of the statistical reaction copolymerizations, such as the kinetic behavior, crosslinking density, and gel fraction, were studied. The gel data were compared with Flory's gelation theory, and the sol fractions of the synthesized copolymers were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The copolymer composition, demonstrating the gradient character of the copolymers, and the microstructure were analyzed. The experimental data agreed well with data calculated with the Mayo–Lewis terminal model and Bernoullian statistics, with monomer reactivity ratios of 2.58 ± 0.37 and 0.51 ± 0.05 for A and B, respectively, an isotacticity parameter for A of 0.24, and a coisotacticity parameter of 0.33. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5304–5315, 2006 相似文献
86.
L. Sauguet B. Ameduri B. Boutevin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4566-4578
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006 相似文献
87.
Binyuan Liu Yang Li Boo‐Gyo Shin Do Yeung Yoon IL Kim Li Zhang Weidong Yan 《Journal of polymer science. Part A, Polymer chemistry》2007,45(15):3391-3399
Three novel functionalized polynorbornenes (PNB) with pendant dimethyl carboxylate group (carboxylates—acetate, propionate, and butyrate) are synthesized as a vinyl‐type with a palladium (II) catalyst in high yield. The effects of size of substitutents, molar ratio of monomer to catalyst, solvent polarity, reaction time, and temperature on the polymerization of exo‐norbornene dimethyl propionate were systematically investigated. The low molar ratio and temperature, as well as high polarity of solvent, and long reaction time, are favorable for the enhancement of the monomer conversion, especially, the solvent have an obvious effect on the catalyst activity. The resulting poly(cis‐norbornene‐exo‐2,3‐dimethyl carboxylates) (PNB‐dimethyl carboxylates) show good solubility in common organic solvent and high thermal stability up to 360 °C. The glass transition temperature was detected by DMA at 331, 324, and 318 °C for acetate, propionate, and butyrate, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3391–3399, 2007 相似文献
88.
Li‐Ming Tang Yan‐Guo Li Wei‐Ping Ye Yue‐Sheng Li 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5846-5854
Ethylene–propylene copolymerization, using [(Ph)NC(R2)CHC(R1)O]2TiCl2 (R1 = CF3, Ph, or t‐Bu; R2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High‐molecular‐weight ethylene–propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R1 and R2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R1 and R2, one complex (R1 = CF3; R2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with 13C NMR to determine the methylene sequence distribution and number‐average sequence lengths of uninterrupted methylene carbons. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5846–5854, 2006 相似文献
89.
Irina N. Savina Bo Mattiasson Igor Yu. Galaev 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1952-1963
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and N‐tert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006 相似文献
90.
Hyeong Taek Ham Yeong Suk Choi Mu Guen Chee In Jae Chung 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):573-584
This work is to make carbon nanotubes dispersible in both water and organic solvents without oxidation and cutting nanotube threads. Polystyrene‐singlewall carbon nanotube (PS‐SWNT) composites were prepared with three different methods: miniemulsion polymerization, conventional emulsion polymerization, and mixing SWNT with PS latex. The two factors, crosslinking and surface coverage of PS are important factors for the mechanical and electrical properties, including dispersion states of SWNT in various solvents. The PS‐SWNT composite prepared via a conventional emulsion polymerization showed SWNT bundles entirely covered with PS, whereas the PS‐SWNT composite prepared via a miniemulsion polymerization showed SWNT partially covered with crosslinked PS nanoparticles. The method of mixing SWNTs with PS latex did not show the well dispersed state of carbon nanotubes because PS was not crosslinked and was dissolved in a solvent, and nanotubes separated from PS precipitated. So the PS nanoparticle‐SWNT composite had lower electrical resistance, and higher mechanical strength than the other composites made by the latter two methods. As the amount of SWNT increases, the bare surface area of SWNT increases and the electrical conductivity increases in the composite made by the miniemulsion polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 573–584, 2006 相似文献