首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3315篇
  免费   306篇
  国内免费   440篇
化学   3630篇
晶体学   16篇
力学   39篇
综合类   22篇
数学   94篇
物理学   260篇
  2024年   4篇
  2023年   11篇
  2022年   44篇
  2021年   56篇
  2020年   79篇
  2019年   68篇
  2018年   73篇
  2017年   123篇
  2016年   160篇
  2015年   123篇
  2014年   132篇
  2013年   349篇
  2012年   165篇
  2011年   184篇
  2010年   180篇
  2009年   201篇
  2008年   216篇
  2007年   211篇
  2006年   175篇
  2005年   202篇
  2004年   196篇
  2003年   132篇
  2002年   133篇
  2001年   108篇
  2000年   96篇
  1999年   90篇
  1998年   87篇
  1997年   88篇
  1996年   57篇
  1995年   45篇
  1994年   57篇
  1993年   70篇
  1992年   51篇
  1991年   24篇
  1990年   18篇
  1989年   10篇
  1988年   14篇
  1987年   7篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
排序方式: 共有4061条查询结果,搜索用时 31 毫秒
21.
This article explores the synthesis of a novel methacrylic macromonomer with an amphiphilic character derived from poly(ethylene glycol) tert‐octylphenyl ether (MT) and its respective homopolymer. To know their reactivity in radical copolymerization reactions with methyl methacrylate (MMA), a model monomer (MTm) was synthesized to determine the reactivity ratios and compare them with the low molar fractions of copolymers of MT with MMA because they were difficult to isolate. They were rMTm = 0.97 and rMMA = 0.95. The compositional diagrams when representing the weight fraction of MT and MTm in the feed and the copolymer suggested that a clear correlation exists between the experimental points of the model monomer MTm and the macromonomer MT ones, suggesting that the length of the side poly(ethylene oxide) chain does not affect the reactivity of the methacrylic double bond in the prepared monomers for this type of polymerization reaction. The reactivity ratios of the copolymers have a tendency for the formation of random or Bernoullian copolymers. The glass‐transition temperatures (Tg's) of the prepared copolymers were determined by differential scanning calorimetry, deviated from the Fox equation, and discussed on the basis of treatments that consider the influence of the monomeric units along the copolymer chains, determining the Tg of the corresponding alternating dyads. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1641–1649, 2003  相似文献   
22.
The solution behavior of new copolymers of methyl methacrylate and benzazole dyes emitting fluorescence because of an intramolecular proton‐transfer mechanism in the electronically excited state has been investigated by static light scattering, fluorescence spectroscopy, ultraviolet–visible, and gel permeation chromatography. In the dilute regime, with tetrahydrofuran (THF) and chloroform as solvents, the copolymers behave as typical polydisperse linear chains in good solvents. The analysis of the osmotic modulus for concentrated solutions in THF (c ≥ 60 g L?1) indicates the existence of an interchain association mechanism. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 341–350, 2003  相似文献   
23.
Bimolecular termination in nitroxide‐mediated radical polymerization in miniemulsion has been investigated through the heating of a polystyrene–2,2,6,6‐tetramethylpiperidinyl‐1‐oxy macroinitiator and its 4‐hydroxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy analogue in an aqueous toluene dispersion with sodium dodecyl benzenesulfonate as a surfactant at 125 °C. The level of bimolecular termination by combination, evaluated from the high‐molecular‐weight shoulder, was higher in miniemulsion than in solution and increased with decreasing particle size. Quantitative analysis revealed that these results cannot be rationalized solely by nitroxide partitioning to the aqueous phase. The results are explained by an interface effect, by which nitroxide is adsorbed or located at the aqueous–organic interface. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4995–5004, 2007  相似文献   
24.
This article deals with the synthesis of hydrophilic methacrylic monomers derived from ethyl pyrrolidone [2‐ethyl‐(2‐pyrrolidone) methacrylate (EPM)] and ethyl pyrrolidine [2‐ethyl‐(2‐pyrrolidine) methacrylate (EPyM)] and their respective homopolymers. For the determination of their reactivity in radical copolymerization reactions, both monomers were copolymerized with methyl methacrylate (MMA), the reactivity ratios being calculated by the application of linear and nonlinear mathematical methods. EPM and MMA had ratios of rEPM = 1.11 and rMMA = 0.76, and this indicated that EPM with MMA had a higher reactivity in radical copolymerization processes than vinyl pyrrolidone (VP; rVP = 0.005 and rMMA = 4.7). EPyM and MMA had reactivity ratios of rEPyM = 1.31 and rMMA = 0.92, and this implied, as for the EPM–MMA copolymers, a tendency to form random or Bernoullian copolymers. The glass‐transition temperatures of the prepared copolymers were determined by differential scanning calorimetry (DSC) and were found to adjust to the Fox equation. Total‐conversion copolymers were prepared, and their behavior in aqueous media was found to be dependent on the copolymer composition. The swelling kinetics of the copolymers followed water transport mechanism case II, which is the most desirable kinetic behavior for a swelling controlled‐release material. Finally, the different states of water in the hydrogels—nonfreezing water, freezing bound water, and unbound freezing water—were determined by DSC and found to be dependent on the hydrophilic and hydrophobic units of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 395–407, 2003  相似文献   
25.
Radical copolymerizations of electron‐deficient 2‐trifluoromethylacrylic (TFMA) monomers, such as 2‐trifluoromethylacrylic acid and t‐butyl 2‐trifluoromethylacrylate (TBTFMA), with electron‐rich norbornene derivatives and vinyl ethers with 2,2′‐azobisisobutyronitrile as the initiator were investigated in detail through the analysis of the kinetics in situ with 1H NMR and through the determination of the monomer reactivity ratios. The norbornene derivatives used in this study included bicyclo[2.2.1]hept‐2‐ene (norbornene) and 5‐(2‐trifluoromethyl‐1,1,1‐trifluoro‐2‐hydroxylpropyl)‐2‐norbornene. The vinyl ether monomers were ethyl vinyl ether, t‐butyl vinyl ether, and 3,4‐dihydro‐2‐H‐pyran. Vinylene carbonate was found to copolymerize with TBTFMA. Although none of the monomers underwent radical homopolymerization under normal conditions, they copolymerized readily, producing a copolymer containing 60–70 mol % TFMA. The copolymerization of the TFMA monomer with norbornenes and vinyl ethers deviated from the terminal model and could be described by the penultimate model. The copolymers of TFMA reported in this article were evaluated as chemical amplification resist polymers for the emerging field of 157‐nm lithography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1478–1505, 2004  相似文献   
26.
Ethylene/1‐hexene copolymerizations with disiloxane‐bridged metallocenes, rac‐ and meso‐1,1,3,3‐tetramethyldisiloxanediyl‐bis(1‐indenyl)zirconium dichloride (rac‐ 1 , meso‐ 1 ) activated by modified methylaluminoxane were performed to investigate the influence of conformational dynamics on comonomer selectivity. Although 1H NOESY (nuclear Overhauser and exchange spectroscopy) analysis indicated that the most stable conformation for the meso isomer in solution was that in which both indenes project over the metal coordination site, this isomer showed higher 1‐hexene selectivity in copolymerization (re = 140 ± 30, rh = 0.024 ± 0.004) than the rac isomer with only one indene over the coordination site (re = 240 ± 20, rh = 0.005 ± 0.001). The meso isomer showed high 1‐hexene selectivity, a high product of reactivity ratios (rerh = 3.3 ± 0.5) and produced copolymers that could be separated into fractions with different ethylene content suggesting that the active species exhibited multisite behavior and populated conformations with different comonomer selectivities during the copolymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3323–3331, 2004  相似文献   
27.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
28.
In the reversible addition–fragmentation transfer (RAFT) copolymerization of two monomers, even with the simple terminal model, there are two kinds of macroradical and two kinds of polymeric RAFT agent with different R groups. Because the structure of the R group could exert a significant influence on the RAFT process, RAFT copolymerization may behave differently from RAFT homopolymerization. The RAFT copolymerization of methyl methacrylate (MMA) and styrene (St) in miniemulsion was investigated. The performance of the RAFT copolymerization of MMA/St in miniemulsion was found to be dependent on the feed monomer compositions. When St is dominant in the feed monomer composition, RAFT copolymerization is well controlled in the whole range of monomer conversion. However, when MMA is dominant, RAFT copolymerization may be, in some cases, out of control in the late stage of copolymerization, and characterized by a fast increase in the polydispersity index (PDI). The RAFT process was found to have little influence on composition evolution during copolymerization. The synthesis of the well‐defined gradient copolymers and poly[St‐b‐(St‐co‐MMA)] block copolymer by RAFT miniemulsion copolymerization was also demonstrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6248–6258, 2004  相似文献   
29.
The ring‐opening copolymerization of a glycidyl ester derivative having a benzophenone group and the donor–acceptor norbornadiene (D‐A NBD) dicarboxylic acid, 5‐(4‐methoxyphenyl)‐1,4,6,7,7‐pentamethyl‐2,5‐norbornadiene‐2,3‐dicarboxylic acid, monoglycidyl ester derivatives with D‐A NBD dicarboxylic anhydride using tetraphenylphosphonium bromide as a catalyst proceeded smoothly to give novel self‐photosensitizing NBD polymers in good yields. The molecular weight of these polyesters was about 4,000, and lower than that of analogous NBD polymers having no benzophenone group. All the synthesized NBD polymers isomerized smoothly to the corresponding quadricyclane (QC) polymers upon UV irradiation in tetrahydrofuran (THF) solution and in the film state. The rate of the photoisomerization of the D‐A NBD moieties in these polymers was higher than that of the D‐A NBD moieties in the polymer having no photosensitizing group. Furthermore, the rate of the photoisomerization of the D‐A NBD moieties in these polymers was also higher than that of the NBD polymer with low molecular weight photosensitizer in dilute solution. The photo‐irradiated polymers having QC moieties released thermal energies of 146–180 J/g. The D‐A NBD moieties contained in these NBD polymers possessed fair to good fatigue resistance. The degradation of the NBD moieties in these polymers was 15–30% after 50 repeated cycles of interconversion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2978–2988, 2007  相似文献   
30.
The first successful example of the formation of polycarbonate from 1-atm carbon dioxide and epoxide was demonstrated by the alternating copolymerization of carbon dioxide and epoxide with manganese porphyrin as a catalyst. The copolymerization of carbon dioxide and cyclohexene oxide with (porphinato)manganese acetate proceeded under the 1-atm pressure of carbon dioxide to give a copolymer with an alternating sequence. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3549–3555, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号