全文获取类型
收费全文 | 5894篇 |
免费 | 484篇 |
国内免费 | 533篇 |
专业分类
化学 | 5712篇 |
晶体学 | 20篇 |
力学 | 112篇 |
综合类 | 50篇 |
数学 | 607篇 |
物理学 | 410篇 |
出版年
2024年 | 13篇 |
2023年 | 32篇 |
2022年 | 101篇 |
2021年 | 128篇 |
2020年 | 212篇 |
2019年 | 196篇 |
2018年 | 182篇 |
2017年 | 245篇 |
2016年 | 298篇 |
2015年 | 282篇 |
2014年 | 335篇 |
2013年 | 502篇 |
2012年 | 356篇 |
2011年 | 394篇 |
2010年 | 371篇 |
2009年 | 399篇 |
2008年 | 384篇 |
2007年 | 356篇 |
2006年 | 320篇 |
2005年 | 287篇 |
2004年 | 268篇 |
2003年 | 213篇 |
2002年 | 167篇 |
2001年 | 139篇 |
2000年 | 128篇 |
1999年 | 89篇 |
1998年 | 76篇 |
1997年 | 83篇 |
1996年 | 59篇 |
1995年 | 59篇 |
1994年 | 47篇 |
1993年 | 46篇 |
1992年 | 41篇 |
1991年 | 17篇 |
1990年 | 16篇 |
1989年 | 18篇 |
1988年 | 11篇 |
1987年 | 7篇 |
1986年 | 5篇 |
1985年 | 7篇 |
1984年 | 9篇 |
1983年 | 2篇 |
1982年 | 5篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有6911条查询结果,搜索用时 17 毫秒
51.
Ken‐ichi Shinohara Tasuku Suzuki Takeshi Kitami Shingo Yamaguchi 《Journal of polymer science. Part A, Polymer chemistry》2006,44(2):801-809
We fabricated a micrometer‐long supramolecular chain in which π‐conjugated polyrotaxane was coupled. A new experimental setup was designed and constructed, and the simultaneous direct imaging of the structure and fluorescent function was achieved. Furthermore, we identified the formation of a polymer intertwined network and observed novel fluorescence due to a long‐range interaction via this intertwined network over a distance of 5 μm or more without quenching over 15 min in the near field. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 801–809, 2006 相似文献
52.
John A. Mikroyannidis Helen A. Moshopoulou John A. Anastasopoulos Minas M. Stylianakis Larysa Fenenko Chihaya Adachi 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6790-6800
Poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐2,8‐vinylene) (PS) and poly(9,9‐dihexylfluorene‐2,7‐vinylene‐alt‐dibenzothiophene‐5,5‐dioxide‐2,8‐ vinylene) (PSO) as well as corresponding model compounds were synthesized by Heck coupling. Both the polymers and model compounds were readily soluble in common organic solvents such as tetrahydrofuran, dichloromethane, chloroform, and toluene. The polymers showed a decomposition temperature at ~430 °C and a char yield of about 65% at 800 °C in N2. The glass‐transition temperatures of the polymers were almost identical (75–77 °C) and higher than those of the model compounds (26–45 °C). All samples absorbed around 390 nm, and their optical band gaps were 2.69–2.85 eV. They behaved as blue‐greenish light emitting materials in both solutions and thin films, with photoluminescence emission maxima at 450–483 nm and photoluminescence quantum yields of 0.52–0.72 in solution. Organic light‐emitting diodes with an indium tin oxide/poly(ethylene dioxythiophene):poly(styrene sulfonic acid)/polymer/Mg:Ag/Ag configuration with polymers PS and PSO as emitting layers showed green electroluminescence with maxima at 530 and 540 nm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6790–6800, 2006 相似文献
53.
Jamie M. Messman Robson F. Storey 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6817-6835
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006 相似文献
54.
Sheng‐Hsiung Yang Hsing‐Chuan Li Chien‐Kai Chen Chain‐Shu Hsu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6738-6749
Two series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) (DP‐PPV) derivatives containing multiple bulky substituents were synthesized. In the first series, two different groups were incorporated on C‐5,6 positions of the phenylene moiety to increase steric hindrance and to obtain blue‐shifted emissions. In the second series, bulky fluorenyl groups with two hexyl chains on the C‐9 position were introduced on two phenyl pendants to increase the solubility as well as steric hindrance to prevent close packing of the main chain. Polymers with high molecular weights and fine‐tuned electro‐optical properties were obtained by controlling the feed ratio of different monomers during polymerization. The maximum photoluminescent emissions of the thin films are located between 384 and 541 nm. Cyclic voltammetric analysis reveals that the band gaps of these light‐emitting materials are in the range from 2.4 to 3.3 eV. A double‐layer EL device with the configuration of ITO/PEDOT/P4/Ca/Al emitted pure green light with CIE′1931 at (0.24, 0.5). Using copolymer P6 as the emissive layer, the maximum luminescence and current efficiency were both improved when compared with the homopolymer P4. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6738–6749, 2006 相似文献
55.
O. Glaied C. Delaite P. Dumas 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1796-1806
We described the obtention of A2B star block copolymers through the use of a new heterotrifunctional initiator. That way, well‐defined (PCL)2‐arm‐PtBuMA and (PCL)2‐arm‐PS star block copolymers have been synthesized from a heterotrifunctional initiator bearing two hydroxyl groups able to initiate ROP of CL (with AlEt3 or Sn(Oct)2 as coinitiator) and a bromide function able to initiate ATRP of tBuMA or styrene. Firstly, we have proceeded using a sequential process (two‐steps), leading to an intermediate macroinitiator. Secondly, attempt to polymerize these two monomers in a simultaneous process (one‐step), that is directly from the mixture of monomers, initiator, coinitiators, and solvent, has been realized and has shown that some interferences between the two polymerizations occurred, leading to an inhibition of ATRP when Sn(Oct)2 was used and an unexpected increase in control when AlEt3 was used as catalyst for the ROP (obtention of well‐defined (PCL)2‐arm‐PtBuMA with pdi of 1.18). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1796–1806, 2006 相似文献
56.
A double hydrophilic block copolymer composed of poly(acrylic acid) (PAA) and poly(4‐vinyl pyridine) (P4VP) was obtained through hydrolysis of diblock copolymer of poly(tert‐butyl acrylate) (PtBA) and P4VP synthesized using atom transfer radical polymerization. Water‐soluble micelles with PAA core and P4VP corona were observed at low (acidic) pH, while micelles with P4VP core and PAA corona were formed at high (basic) pH. Two metalloporphyrins, zinc tetraphenylporphyrin (ZnTPP) and cobalt tetraphenylporphyrin (CoTPP), were used as model compounds to investigate the encapsulation of hydrophobic molecules by both types of micelles. UV–vis spectroscopic measurements indicate that micelles with P4VP core are able to entrap more ZnTPP and CoTPP as a result of the axial coordination between the transition metals and the pyridine groups. The study found that metalloporphyrins encapsulated by the micelles with PAA core could be released on pH increase, while those entrapped by the micelles with P4VP core could be released on pH decrease. This behavior originates from the two‐way pH change‐induced disruption of PAA‐b‐P4VP micelles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1734–1744, 2006 相似文献
57.
Suresh K. Jewrajka Uma Chatterjee 《Journal of polymer science. Part A, Polymer chemistry》2006,44(6):1841-1854
The synthesis of polymer‐matrix‐compatible amphiphilic gold (Au) nanoparticles with well‐defined triblock polymer poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] and diblock polymers poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], polystyrene‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate], and poly(t‐butyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate] in water and in aqueous tetrahydrofuran (tetrahydrofuran/H2O = 20:1 v/v) at room temperature is reported. All these amphiphilic block copolymers were synthesized with atom transfer radical polymerization. The variations of the position of the plasmon resonance band and the core diameter of such block copolymer functionalized Au particles with the variation of the surface functionality, solvent, and molecular weight of the hydrophobic and hydrophilic parts of the block copolymers were systematically studied. Different types of polymer–Au nanocomposite films [poly(methyl methacrylate)–Au, poly(t‐butyl methacrylate)–Au, polystyrene–Au, poly(vinyl alcohol)–Au, and poly(vinyl pyrrolidone)–Au] were prepared through the blending of appropriate functionalized Au nanoparticles with the respective polymer matrices {e.g., blending poly[2‐(N,N‐dimethylamino)ethyl methacrylate]‐b‐poly(methyl methacrylate)‐b‐poly[2‐(N,N‐dimethylamino)ethyl methacrylate‐stabilized Au with the poly(methyl methacrylate)matrix only}. The compatibility of specific block copolymer modified Au nanoparticles with a specific homopolymer matrix was determined by a combination of ultraviolet–visible spectroscopy, transmission electron microscopy, and differential scanning calorimetry analyses. The facile formation of polymer–Au nanocomposites with a specific block copolymer stabilized Au particle was attributed to the good compatibility of block copolymer coated Au particles with a specific polymer matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1841–1854, 2006 相似文献
58.
Christian Buchgraber Alexander Pogantsch Stefan Kappaun Julia Spanring Wolfgang Kern 《Journal of polymer science. Part A, Polymer chemistry》2006,44(14):4317-4327
Light‐emitting diodes based on organic materials [organic light‐emitting diodes (OLEDs)] have attracted much interest over the past decade. Several different attempts have been made to realize multicolor OLEDs. This article describes a new approach based on energy transfer in a donor/acceptor system. A copolymer containing both donor and acceptor compounds as comonomer units is prepared. The polymer consists of a derivative of a luminescent dye [4‐dicyanmethylene‐2‐methyl‐6‐4H‐pyran (DCM); acceptor compound], which is copolymerized with fluorene (donor compound) to combine the properties of an electroactive polymer with a highly luminescent dye. Photochemical processing is achieved by UV irradiation of this copolymer in the presence of gaseous trialkylsilanes. This reagent selectively saturates the C?C bonds in the DCM comonomer units while leaving the fluorene units essentially unaffected. As a result of the photochemical process, the red electroluminescence of the acceptor compound vanishes, and the blue‐green electroluminescence from the polyfluorene units is recovered. Compared with previous approaches based on polymer blends, this copolymer approach avoids problems associated with phase‐separation phenomena in the active layer of OLEDs. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4317–4327, 2006 相似文献
59.
Ying Chen Anita E. Tavakley Tate M. Mathiason T. Andrew Taton 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2604-2614
Photocrosslinkable poly(vinylbenzophenone)‐containing polymers were synthesized via a one‐step, Friedel–Crafts benzoylation of polystyrene‐containing starting materials [including polystyrene, polystyrene‐block‐poly(tert‐butyl acrylate), polystyrene‐block‐poly(ethylene oxide), polystyrene‐block‐poly(methyl methacrylate), and polystyrene‐block‐poly(n‐butyl acrylate)] with benzoyl trifluoromethanesulfonate as a benzoylation reagent. The use of this mild reagent (which required no added Lewis acid) permitted polymers with well‐defined compositions and narrow molecular weight distributions to be synthesized. Micelles formed from one of these benzoylated polymers, [polystyrene0.25‐co‐poly(vinylbenzophenone)0.75]115‐block‐poly(acrylic acid)14, were then fixed by the irradiation of the micelle cores with UV light. As the irradiation time was increased, the pendent benzophenone groups crosslinked with other chains in the glassy micelle cores. Dynamic light scattering, spectrofluorimetry, and Fourier transform infrared spectroscopy were all used to verify the progress of the crosslinking reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2604–2614, 2006 相似文献
60.
Kozo Matsumoto Junichi Nakashita Hideki Matsuoka 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4696-4707
Diblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene (polyVSA‐b‐polySt) and triblock copolymer poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane)‐block‐polystyrene‐block‐poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA‐b‐polySt‐b‐polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane and styrene. PolyVSA‐b‐polySt formed micelles having a poly(1,1,3,N,N′‐pentamethyl‐3‐vinylcyclodisilazane) (polyVSA) core in N,N‐dimethylformamide, whereas polyVSA‐b‐polySt and polyVSA‐b‐polySt‐b‐polyVSA formed micelles having a polyVSA shell in n‐heptane. The micelles with a polyVSA core were core‐crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell‐crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6‐hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X‐ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696–4707, 2006 相似文献