首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   242篇
  国内免费   269篇
化学   2047篇
晶体学   38篇
力学   460篇
综合类   3篇
数学   97篇
物理学   453篇
  2024年   9篇
  2023年   28篇
  2022年   49篇
  2021年   67篇
  2020年   135篇
  2019年   90篇
  2018年   92篇
  2017年   130篇
  2016年   162篇
  2015年   120篇
  2014年   132篇
  2013年   270篇
  2012年   128篇
  2011年   150篇
  2010年   138篇
  2009年   167篇
  2008年   148篇
  2007年   160篇
  2006年   167篇
  2005年   137篇
  2004年   120篇
  2003年   89篇
  2002年   64篇
  2001年   52篇
  2000年   42篇
  1999年   42篇
  1998年   36篇
  1997年   28篇
  1996年   31篇
  1995年   16篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1957年   2篇
排序方式: 共有3098条查询结果,搜索用时 15 毫秒
921.
Moisture may cause many detrimental effects to polymers and their composites, thus inhibiting the applications of polymeric materials in hot and humid environments. In this article, a convection–diffusion porous media model is derived to better characterize rapid moisture transport in polymer composites at high temperatures. The model considers both continuum diffusion in solid and high‐pressure convection taking place in the pore network. Coupling of convection and diffusion is achieved by combining the law of conservation of mass, Darcy's law, the liquid–vapor chemical equilibrium, and the ideal gas law. The presented model is validated by conducting experimental tests on an epoxy compound. It is found that the proposed convection–diffusion model is more effective than diffusion‐only and convection‐only models for interpreting rapid desorption tests at high temperatures. A numerical study is also performed to predict maximum vapor pressure during a rapid heating process. Vapor pressure is found to be as high as 6.5 MPa at a heating rate of 10 K/s. It is concluded that the convection–diffusion model is able to capture both vapor dynamics and diffusion mechanism in porous polymeric materials, and can be potentially used to further investigate polymer‐moisture interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1440–1449  相似文献   
922.
Anionic cerasomes, which consist of a liposomal lipid bilayer and a ceramic surface, were used as a soft interface for the construction of an integrated modified electrode to achieve the transmission of chemical information from a redox enzyme through electrical signals. The morphological properties of the cerasomes were systematically compared with those of two structural analogues, namely, liposomes and silica nanoparticles. The results indicated that the cerasomes combined the advantages of liposomes and silica nanoparticles. The lipid bilayer gave excellent biocompatibility, as in the case of liposomes, and high structural stability, similar to that of silica nanoparticles, was derived from the silicate framework on the cerasome surface. The performance at the electrochemical interface created by means of a combination of cerasomes and horseradish peroxidase on a glassy carbon electrode was much better than those achieved with liposomes or silica nanoparticles instead of cerasomes. The potential use of cerasomes in the construction of supramolecular devices for mediator‐free biosensing was evaluated.  相似文献   
923.
Pineapple leaf fiber (PALF), used as a reinforcing agent, does not have good adhesion to natural rubber (NR) due to the difference in their polarities. As a result, the degree of reinforcement of NR imparted by PALF remains low compared to that in a polar rubber like acrylonitrile butadiene (NBR). One of the factors that determines the adhesion between the rubber and the reinforcement is the rubber molecular weight. Thus, the aim of this paper is to demonstrate that the stress at very low strains of short pineapple leaf fiber (PALF) reinforced natural rubber (NR) can be significantly increased by lowering the matrix molecular weight. This can be achieved by increasing the matrix mastication time. The composites studied here contain a fixed amount of PALF at 10 part (by weight) per hundred rubber (phr). The PALF fibers were both untreated (UPALF) and sodium hydroxide treated (TPALF). Mastication times of 2, 4, 8 and 16 min were used. Stress-strain curves of PALF reinforced NR prepared with different mastication times were then compared. The most affected region of the curve is in the low strain region. The slopes of the stress-strain curves (moduli) increase with increasing mastication time, indicating better fiber-rubber interaction. The maximum stress achieved at 10% strain is almost 370% that obtained with the usual short mastication time (2 min). The effect remains up to very high strains, although becoming smaller as the strain is increased. Hence, we demonstrate that, by using long enough mastication time, stress-strain curves and stress at low strain of PALF reinforced NR can be improved without the need of any other adhesion promoters.  相似文献   
924.
The effect of silica nanofiller surface chemistry on compounded particle size and high strain particle dewetting in a semitransparent nanosilica‐filled elastomer composite was determined using backscattered visible light and transmitted light, respectively. The integrated intensities of backscattered light from the samples were collected at various visible wavelengths for thin‐film composites using ultraviolet–visible spectrometer with an integrating sphere. The data revealed strong Rayleigh‐type scattering from compounded filler particles. Size information was extracted and found to broadly correlate with scanning electron microscopy image analysis of fracture surface. Incorporation of a siloxane surface treatment chemical during compounding resulted in a reduced average filler particle size in the cured composite. On extension of the samples, an optical transition was observed only in the filled composites. At high strains, the semi transparent samples displayed an abrupt drop in transparency becoming opaque. This was quantified using a simple light transmission‐sample extension technique. Strain‐induced crystallization was discounted as the cause for the transition by X‐ray diffraction analysis. The onset yield stress for the optical transition was found to be filler surface‐chemistry‐dependent with the siloxane‐treated filler exhibiting a greatly increased onset stress value. These observations were discussed and rationalized in terms of filler particle–matrix dewetting and cavitation at high strains. Matrix–filler dewetting was distinguished from matrix cavitation by comparison with Beer–Lambert behavior derived from unstrained samples. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011.  相似文献   
925.
A recently introduced new branch of applied polymer science is the production of highly functional and responsive fiber mats by means of electrospinning polymers that include liquid crystals. The liquid crystal, which provides the responsiveness, is most often contained inside fibers of core‐sheath geometry, produced via coaxial electrospinning, but it may also be inherent to the polymer itself, for example, in case of liquid crystal elastomers. The first experiments served as proof of concept and to elucidate the basic behavior of the liquid crystal in the fibers, and the field is now ripe for more applied research targeting novel devices, in particular in the realm of wearable technology. In this perspective, we provide a bird's eye view of the current state of the art of liquid crystal electrospinning, as well as of some relevant recent developments in the general electrospinning and liquid crystal research areas, allowing us to sketch a picture of where this young research field and its applications may be heading in the next few years. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B Polym. Phys. 2013, 51, 855–867  相似文献   
926.
A silver ion (Ag+)‐triggered thixotropic metallo(organo)gel of p‐pyridyl‐appended oligo(p‐phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single‐walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by π–π interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH‐doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased stepwise in the order: freshly prepared gel<dihybrid gel<trihybrid gel. Microscopic studies of the trihybrid gel indicate the formation of three distinct morphologies, that is, nanoscale metal–organic particles (NMOPs), flowerlike aggregates of SWCNHs and AgNPs, and also their integration with each other. Detailed studies suggest lamellar organizations of the linear metal–ligand complexes in the NMOPs, which upon association create a three‐dimensional network that eventually immobilizes the solvent molecules.  相似文献   
927.
Short glass fiber reinforced polypropylene (sgf-PP) is increasingly used in the automotive industry with the impact properties as key parameter. Experimentally, the impact behavior strongly depends on the specimen design, test set-up as well as temperature, and thus the characterization method should always be attuned to the occurring impact conditions of the final part. However, in order to deduce some general design criteria for sgf-PP, in this study a wide range of experimental parameters were investigated, specially focusing also on the effect of the governing, local fiber orientation distribution (FOD). Therefore, the effects of stress state (tensile, puncture and bending test), amount of stress concentration (notch radius) and temperature are characterized and discussed. The results proved that, as expected, distinctly different levels of impact strength and different dependencies on notches and notch radii are obtained for the various test set-ups. However, similarities in the temperature dependence are observed for specimens with similar governing fiber orientation.  相似文献   
928.
《Comptes Rendus Mecanique》2017,345(11):742-751
This article addresses the asymptotic response of viscoelastic heterogeneous media in the frequency domain, at high and low frequencies, for different types of elementary linear viscoelastic constituents. By resorting to stationary principles for complex viscoelasticity and adopting a classification of the viscoelastic behaviours based on the nature of their asymptotic regimes, either elastic or viscous, four exact relations are obtained on the overall viscoelastic complex moduli in each case. Two relations are related to the asymptotic uncoupled heterogeneous problems, while the two remaining ones result from the viscoelastic coupling that manifests itself in the transient regime. These results also provide exact conditions on certain integrals in time of the effective relaxation spectrum. This general setting encompasses the results obtained in preceding studies on mixtures of Maxwell constituents [1], [2].  相似文献   
929.
This paper presents the interfacial optimisation and characterisation of WPC by the use of maleated and silane coupling agents (MAPE, Si69 and VTMS), and its effect on the bulk and in situ mechanical properties. The results showed the treated WPC possessed better interface by showing improved compatibility between the constituents, wettability of wood flour, and resin penetration in the SEM images. The enhanced interface led to the increase in the tensile strength and stiffness of the treated WPC, which was confirmed by their superior load bearing capacity, namely the higher storage moduli measured by DMA. The observed shift of the relaxation peak of the treated WPC indicated the constraints on the segmental mobility of the polymeric molecules resulted from the treatments. Nanoindentation investigation revealed that the in situ mechanical properties were subject to a number of phenomena including fibre weakening or softening impact, crystalline structure transformation and cell wall deformation, concluding that the bulk mechanical properties of WPC might not be governed by the local property of materials within the interface.  相似文献   
930.
Silicon(Si) materials as anode materials for applications in lithium-ion batteries(LIBs) have received increasing attention.Among the Si materials,the electrochemical properties of SiO_x-based(0x≤2)composites are the most prominent.However,due to the cycling stability of SiO_x being far from practical,there are some problems,such as Iow initial coulombic efficiency(ICE),obvious volume expansion and poor conductivity.Researchers in various countries have optimized the electrochemical properties of SiO_x-based composites by means of pore formation,surface modification,and the choice of constituents.In this review,SiO_x-based composites are classified into three categories based on the valency of Si(SiO_2 composites,SiO composites and SiO_x(0x2) composites).The synthesis,morphologies and electrochemical properties of the SiO_x-based composites that are applied in LIB are discussed.Finally,the prope rties of several common SiO_x-based composites are briefly compared and the challenges faced by SiO_x-based composites are highlight.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号