首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2587篇
  免费   242篇
  国内免费   269篇
化学   2047篇
晶体学   38篇
力学   460篇
综合类   3篇
数学   97篇
物理学   453篇
  2024年   9篇
  2023年   28篇
  2022年   49篇
  2021年   67篇
  2020年   135篇
  2019年   90篇
  2018年   92篇
  2017年   130篇
  2016年   162篇
  2015年   120篇
  2014年   132篇
  2013年   270篇
  2012年   128篇
  2011年   150篇
  2010年   138篇
  2009年   167篇
  2008年   148篇
  2007年   160篇
  2006年   167篇
  2005年   137篇
  2004年   120篇
  2003年   89篇
  2002年   64篇
  2001年   52篇
  2000年   42篇
  1999年   42篇
  1998年   36篇
  1997年   28篇
  1996年   31篇
  1995年   16篇
  1994年   29篇
  1993年   14篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1957年   2篇
排序方式: 共有3098条查询结果,搜索用时 15 毫秒
911.
粗集料对超高性能水泥基材料动态力学性能的影响   总被引:2,自引:0,他引:2  
戎志丹  孙伟 《爆炸与冲击》2009,29(4):361-366
采用大掺量超细工业废渣取代水泥、最大粒径为2.5 mm的天然砂取代粒径为600 m的磨细石英砂,并掺加了最大粒径为10 mm的高弹高强粗集料,制备出抗压强度达200 MPa的超高性能水泥基复合材料。并采用分离式霍普金森压杆装置对不同纤维掺量的钢纤维增强超高性能水泥基复合材料(ultra-high performance steel fiber reinforced cementitious composites, UHPSFRCC)试件进行了高速冲击压缩实验,研究了应变率和纤维掺量对该材料抗冲击性能的影响规律及粗集料发挥的作用。结果表明,UHPSFRCC的抗冲击能力随纤维掺量的增加而增强;动态强度随应变率的提高相应地增大;动态性能因掺入用作粗集料的玄武岩碎石而得到了相应的改善。还分析了超高性能水泥基复合材料具有高动态性能的机理。  相似文献   
912.
锡青铜纤维基自润滑复合材料的机械和摩擦磨损性能研究   总被引:2,自引:1,他引:1  
采用粉末冶金工艺制备了以锡青铜纤维为基体,以PTFE和MoS2固体润滑剂为复合润滑相应的自润滑材料,考察了其机械性能和摩擦磨损性能,并与以锡青铜粉为基体的同种自润滑材料进行了性能对比。结果表明:纤维基材料的抗拉强度和冲击韧性分别为粉末基材料的2 ̄6倍和2 ̄8倍,且具有良好的渗透性,因纤维体通孔多和具有蜂窝结构,有利于润滑剂的渗透和贮存,因而相应的复合材料的自润滑性能良好。  相似文献   
913.
914.
Properties of the polyurethane-rubber composites obtained from used products were studied. The influence of the amount of polyurethane glue and amount of isocyanate diphenylmethane 4,4′-diisocyanate (MDI) on composites selected properties was observed.

The dynamic thermo-mechanical analysis allowed us to determine the glass transition temperature Tg and the course of the relaxation processes in the composites. The analysis of the changes in the storage module E′ and loss module E as a function of temperature enabled the calculation of the activation energy for relaxation processes of various polyurethane glues and polyurethane-rubber composites.  相似文献   
915.
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress–deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.  相似文献   
916.
To improve the mechanical properties of polyaspartate polyurea (PAEP), functionalized nano-silica reinforced polyurea composites were prepared. The original nano-silica (O-SiO2) was treated with 3-aminopropyltriethoxysilane (APTES), and the amino group at the end of APTES was used as the initiation site to realize the coating modification of poly(γ-benzyl l -glutamate) (PBLG) onto O-SiO2. The dispersion, wettability, and interfacial properties of functionalized nano-silica (PBLG-SiO2) in PAEP were analyzed. The tensile and tear properties of PBLG-SiO2/PAEP composites were tested, and the reinforcement mechanism was revealed. The results showed the dispersibility of PBLG-SiO2 in PAEP had been improved markedly. The contact angle of PBLG-SiO2 with PAEP was 29.31°, which was significantly lower than that of O-SiO2 (76.48°). The adhesion work between PBLG-SiO2 and PAEP was 97.16 mJ/m2, an increase of 51.7% compared with O-SiO2. When the content of PBLG-SiO2 was 2 phr, the tensile strength, Young's modulus, and tear strength of PAEP composites reached the maximum of 17.43 MPa, 157.12 MPa, and 127.38 N/mm, an increase of 33.6%, 77.9%, and 71.3%, respectively, compared with pure PAEP. The analysis of cross-section showed that the strengthening mechanism of PBLG-SiO2 on PAEP was mainly manifested by non-planar cracks, deflection and bifurcation of cracks, and plastic deformation of PAEP matrix caused by peeling of PBLG-SiO2 from matrix.  相似文献   
917.
A series of high‐performance polymer/carbon nanotube (CNT) composites with different nanotube contents have been prepared via condensation of N‐silylated diamino terminated precursor of the polymer with acid chloride‐functionalized CNTs and subsequent thermal cyclodehydration. The composites have been fully characterized by infrared and Raman spectroscopy, electron microscopy, and thermal analysis. Various interesting morphologic features including helical structures have been observed in the composites as a result of covalent attachment of the polymer. The composites exhibit excellent thermal stability and a significant improvement in the dielectric constant and mechanical strength with the inclusion of CNTs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
918.
In the present work, B4C/2024Al composites with volume fraction of 45% were prepared by a pressure infiltration method. The microstructure of the crater bottom of B4C/2024Al composite after impact was characterized by transmission electron microscope (TEM), which indicated that recovery and dynamic recrystallization generated in Al matrix, and the grain size distribution was about from dozens of nanometer to 200 nm. Furthermore, the plastic deformation was observed in B4C ceramic, which led to the transformation from monocrystal to polycrystal ceramic grains. The boundary observed in this work was high-angle grain boundary and the two grains at the boundary had an orientation difference of 30°.  相似文献   
919.
Fabrication of biodegradable composites applicable as hard tissue substitutes consisting of poly(ε‐caprolactone fumarate) (PCLF), methacrylic acid (MAA), and hydroxyapatite (HA) was investigated. PCLF macromers were synthesized by reaction of PCL diol with fumaryl chloride in the presence of propylene oxide and characterized by gel permeation chromatography, FTIR, and 1H NMR spectroscopy. Composites were fabricated by incorporating HA as inorganic filler in PCLF matrix which followed by thermal curing of the composition using benzoyl peroxide and MAA as a free radical initiator and reactive diluent, respectively. Uniform distribution of the fine ceramic phase in the polymer matrix was elucidated by scanning electron microscopy. The effects of the initial macromer molecular weight and the filler volume fraction on mechanical properties and cytotoxicity of the composites were also examined. Significant enhancement in the mechanical properties was observed upon increasing HA content and/or initial PCLF molecular weight. The biocompatibility of the specimens was also improved with increasing ceramic phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
920.
A novel method for the preparation of monodisperse porous silica microspheres with controllable morphology and structure is reported. The starting porous polymer microspheres were first functionalized with ethylenediamine (EDA) to generate amino groups. Subsequently, silica nanoparticles were deposited in the porous polymer microsphere to form polymer/silica hybrid microspheres via a modified sol‐gel process in the presence of tetra‐n‐butylammonium bromide (TBAB) or tetramethyl ammonium hydroxide (TMAH). Upon calcination of the polymer/silica hybrid microspheres, the porous silica microspheres were obtained. The morphology, inner structure, and properties of the porous silica microspheres were studied by field emission scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis, and mercury intrusion method. The results show that the presence of TBAB or TMAH in the process not only prevents the agglomeration of the hybrid microspheres, but also governs the controllable morphology from a porous inner structure to a hollow‐cage structure. The obtained porous silica microspheres exhibit no shrinkage from the polymer microspheres with a yield of around 98%. These porous silica microspheres have potential applications in the fields of chromatography, catalyst, and biology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号