首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   4篇
  国内免费   5篇
化学   58篇
力学   1篇
综合类   1篇
物理学   15篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   6篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   14篇
  2011年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
41.
In order to improve the compatibility of polycarbonate (PC) and acrylonitrile– butadiene–styrene (ABS), a new type of reactive compatibilizer, methyl methacrylate graft acrylonitrile–butadiene–styrene (MABS) tetramer, was synthesized. The structure and properties of PC/ABS (70/30) blend with various MABS ratios were studied in terms of their mechanical and morphological properties. The results indicated that with the addition of MABS, the glass transition temperature (Tg) of the PC and ABS phases were closer to each other. Addition of MABS decreased the domain size of the ABS dispersed phase, making the dispersed phase well distributed, and the interfacial cohesiveness was enhanced. Notched impact strength and elongation at break of the PC/ABS (70/30) blend increased remarkably with the addition of MABS, with a small drop in the tensile strength.  相似文献   
42.
A multiblock copolymer of polyethersulfone (PES) and polycarbonate (PC) was used as a compatibilizer for a blend of PES/PC. The morphology, thermal properties, mechanical properties, etc. of the resulting ternary blend systems were investigated. The addition of the compatibizer improved the compatibility between PES and PC. It was found that the interfacial adhesion was enhanced; the size of the dispersed phase was reduced and this resulted in an improvement of elongation at break and tenacity of PES/PC blends and tensile strength and tensile modulus were almost constant.  相似文献   
43.
The compatibilization effect of linear low‐density polyethylene‐grafted maleic anhydride (LLDPEgMA) and high‐density polyethylene‐grafted maleic anhydride (HDPEgMA) on high‐density polyethylene (HDPE)/polyamide 6 (Nylon 6) blend system is investigated. The morphology of 45 wt %/55 wt % polyethylene/Nylon 6 blends with three compatibilizer compositions (5 wt %, 10 wt %, and 15 wt %) are characterized by atomic force microscopic (AFM) phase imaging. The blend with 5 wt % LLDPEgMA demonstrates a Nylon 6 continuous, HDPE dispersed morphology. Increased amount of LLDPEgMA leads to sharp transition in morphology to HDPE continuous, Nylon 6 dispersed morphology. Whereas, increasing HDPEgMA concentration in the same blends results in gradual morphology transition from Nylon 6 continuous to co‐continuous morphology. The mechanical properties, oxygen permeability, and water vapor permeability are measured on the blends which confirm the morphology and indicate that HDPEgMA is a better compatibilizer than LLDPEgMA for the HDPE/Nylon 6 blend system. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 281–290  相似文献   
44.
It is of great significance to synthesize polyolefin/polysiloxane hybrid materials due to their unique combination of crystalline polyolefin segments and semiorganic polysiloxane segments. Herein, we report the syntheses of a novel polypropylene/polydimethylsiloxane (PP‐g‐PDMS) graft copolymer via the coupling reactions between maleic anhydride‐grafted PP and monoaminopropyl‐terminated PDMS. The chemical structures of PP‐g‐PDMS have been characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC). The correlation between reaction conditions and the structural parameters of PP‐g‐PDMS has been established. Consequently, the potential applications of resultant PP‐g‐PDMS were investigated, and the results showed that PP‐g‐PDMS can serve as an efficient compatibilizer in heterogeneous PP/PDMS blend system and also as an ideal processing aid for high‐viscosity PP.  相似文献   
45.
46.
增容剂SB对LDPE/PS共混物形态的影响   总被引:1,自引:1,他引:0  
研究了不同温度和转速下苯乙烯 -丁二烯二嵌段共聚物 (SB)低密度聚乙烯 聚苯乙烯共混物形态和分散相颗粒尺寸的影响。结果表明 ,未加入SB的共混物在 1 50℃时的分散相颗粒尺寸比 2 0 0℃粗大 ,形态极不规则 :加入SB的共混物在 1 50℃时颗粒尺寸比 2 0 0℃时稍小 ,但形态变化不大。在 1 50℃ ,转速从 3 0r min至 1 0 0r min时 ,未加入SB的共混物的分散相颗粒尺寸迅速减小 ,而加入SB的共混物在 3 0r min时达到平衡颗粒尺寸 ,继续增加转速 ,形态和颗粒尺寸没有明显变化。  相似文献   
47.
采用双螺杆挤出机制备聚酰胺/超高分子量聚乙烯(PA66/UHMWPE)和聚酰胺/超高分子量聚乙烯/马来酸酐接枝高密度聚乙烯(PA66/UHMWPE/MAH-g-HDPE)共混物,采用傅立叶转换红外光谱仪分析共混体系的结构,同时评价其机械性能及摩擦磨损性能.结果表明:加入MAH-g-HDPE相容剂可以使共混体系的相容性得到改善,提高共混物的机械性能;具有平整分子结构的UHMWPE有利于改善PA66的摩擦磨损性能,当摩擦偶件的转移层达到饱和状态后,共混物的耐磨性与其力学性能相关;共混物在摩擦过程中表现出严重的塑性变形和粘着磨损,但在共混体系的摩擦过程中,对摩擦磨损性能起主要作用的是受热软化的UHMWPE在磨损表面形成低剪切强度的界面层,从而使得PA66的摩擦磨损性能明显改善.  相似文献   
48.
In this work, the compatibilization effects of hybrid maleated POE/attapulgite hybrid compatibilizer (M-POE/ATP) on the immiscible polypropylene/poly(glycolic acid) (PP/PGA) blends was investigated. The hybrid compatibilizer integrating strengthening, toughening and compatibilization functions was prepared via one-step reactive extrusion using peroxidated ATP as the initiator. Then, the effects of compatibilizer dosage on the mechanical, thermal, rheological and morphological characteristics of blends were evaluated in detail. It was found that the hybrid compatibilizer resulted in the significantly enhanced compatibility and mechanical performance. Increased amount of compatibilizer content fractionated and almost wholly suppressed the crystallization process of PGA. The compatibilized blends showed higher thermal stability than pure PGA, and lower storage modulus and complex viscosity at higher shearing frequency. PGA in the blends presented a much lower degradation rate, which lead to the higher strength retention of 81% for the blend with 4 wt% of compatibilizer in buffer solution after 35 days.  相似文献   
49.
The shear and extensional rheology of polypropylene (PP)/organoclay nanocomposites in the presence of various maleic anhydride grafted polypropylene (PP-g-MA) compatibilizer concentrations were investigated. The PP nanocomposites were prepared via direct melt intercalation in an internal mixer. The structures of the nanocomposites were characterized by X-ray diffraction (XRD) and scanning electron microscopy. It was found that both the compatibilized and uncompatibilized nanocomposites could form an intercalated structure. However, the organoclay particles can disperse well only in the compatibilized systems. The linear viscoelastic properties, including the storage modulus G′ and complex viscosity η* were very sensitive to the microstructure of the nanocomposites. The extensional viscosities of PP nanocomposites were enhanced under a low deformation rate with increasing compatibilizer content and displayed a lack of superposition for different strain rates. It was proposed that the lack of superposition might originate from the formation of a three-dimensional organoclay network, which decreased in its complexity and strength as the deformation rate increased.  相似文献   
50.
Epoxidized natural rubber (ENR50) and two different kinds of organoclay (C30B and C15A) were used in blends of styrene-butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) and their effects upon interaction between phases, morphology, and mechanical properties of the blends were investigated. The compounds were characterized by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The obtained results showed formation of hydrogen bonding between the compounds ingredients due to incorporation of C30B, especially in presence of ENR. AFM and FE-SEM analysis revealed good dispersion of the nanoparticles in the polymer matrix upon addition of ENR as well as better dispersion of C30B than C15A in the NBR phase. XRD results showed a greater expansion of the silicate layers by simultaneous use of organoclay and ENR Incorporation of organoclay alone or in combination with ENR in the blends caused shifting of the SBR Tg toward the NBR Tg. The tensile properties of the blends showed improvement by using nanoparticles in the presence of ENR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号