首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29516篇
  免费   3062篇
  国内免费   2375篇
化学   27983篇
晶体学   159篇
力学   122篇
综合类   153篇
数学   170篇
物理学   6366篇
  2024年   77篇
  2023年   368篇
  2022年   950篇
  2021年   838篇
  2020年   1027篇
  2019年   1067篇
  2018年   905篇
  2017年   1131篇
  2016年   1449篇
  2015年   1361篇
  2014年   1347篇
  2013年   2226篇
  2012年   2102篇
  2011年   1764篇
  2010年   1560篇
  2009年   1832篇
  2008年   1672篇
  2007年   1897篇
  2006年   1667篇
  2005年   1448篇
  2004年   1312篇
  2003年   1113篇
  2002年   882篇
  2001年   564篇
  2000年   593篇
  1999年   525篇
  1998年   469篇
  1997年   429篇
  1996年   408篇
  1995年   376篇
  1994年   283篇
  1993年   262篇
  1992年   217篇
  1991年   239篇
  1990年   124篇
  1989年   88篇
  1988年   82篇
  1987年   64篇
  1986年   46篇
  1985年   40篇
  1984年   31篇
  1983年   18篇
  1982年   21篇
  1981年   18篇
  1980年   12篇
  1979年   13篇
  1978年   4篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run‐to‐run precision, enables the setting of batch‐type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4–65.4%, with a %CV range of 2–12. Twenty‐one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β‐carotene was carried out by using the optimized conditions.  相似文献   
992.
A simple method was developed and validated for the simultaneous determination of metalaxyl, cyazofamid and the cyazofamid metabolite 4‐chloro‐5‐p‐tolylimidazole‐2‐carbonitrile (CCIM) by liquid chromatography with tandem mass spectrometry. The three target compounds were extracted from tobacco and soil with acetonitrile containing 0.1% acetic acid, and the extracts were purified using octadecylsilane. The proposed method showed satisfactory linearity (R2 ≥ 0.9985) for the target compounds. The limits of detection for metalaxyl, cyazofamid and CCIM were 0.006, 0.06 and 0.06 mg/kg in soil and green tobacco leaves and 0.03, 0.3 and 0.3 mg/kg in cured tobacco leaves, respectively. The limits of quantification for metalaxyl, cyazofamid and CCIM were 0.02, 0.2 and 0.2 mg/kg in soil and green tobacco leaves and 0.1, 1 and 1 mg/kg in cured tobacco leaves, respectively. The average recoveries from soil and tobacco were 72.91–98.40% for metalaxyl, 76.73–105.80% for cyazofamid and 74.48–106.45% for CCIM. The relative standard deviation range was 1.23–6.99%. The developed method was successfully applied to analysis of residues of metalaxyl, cyazofamid and CCIM in real soil and tobacco samples. The results indicated that the established method could meet the requirement for the analysis of trace amounts of all three analytes in soil and tobacco.  相似文献   
993.
A simple, sensitive and reproducible ultra‐performance liquid chromatography–tandem mass spectrometry method has been developed for the simultaneous determination of atenolol, a β‐adrenergic receptor‐blocker and chlorthalidone, a monosulfonamyl diuretic in human plasma, using atenolol‐d7 and chlorthalidone‐d4 as the internal standards (ISs). Following solid‐phase extraction on Phenomenex Strata‐X cartridges using 100 μL human plasma sample, the analytes and ISs were separated on an Acquity UPLC BEH C18 (50 mm × 2.1 mm, 1.7 µm) column using a mobile phase consisting of 0.1% formic acid–acetonitrile (25:75, v/v). A tandem mass spectrometer equipped with electrospray ionization was used as a detector in the positive ionization mode for both analytes. The linear concentration range was established as 0.50–500 ng/mL for atenolol and 0.25–150 ng/mL for chlorthalidone. Extraction recoveries were within 95–103% and ion suppression/enhancement, expressed as IS‐normalized matrix factors, ranged from 0.95 to 1.06 for both the analytes. Intra‐batch and inter‐batch precision (CV) and accuracy values were 2.37–5.91 and 96.1–103.2%, respectively. Stability of analytes in plasma was evaluated under different conditions, such as bench‐top, freeze–thaw, dry and wet extract and long‐term. The developed method was superior to the existing methods for the simultaneous determination of atenolol and chlorthalidone in human plasma with respect to the sensitivity, chromatographic analysis time and plasma volume for processing. Further, it was successfully applied to support a bioequivalence study of 50 mg atenolol + 12.5 mg chlorthalidone in 28 healthy Indian subjects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
994.
This paper presents the analysis of surfactants in complex mixtures using Raman spectroscopy combined with signal extraction (SE) methods. Surfactants are the most important component in laundry detergents. Both their identification and quantification are required for quality control and regulation purposes. Several synthetic mixtures of four surfactants contained in an Ecolabel laundry detergent were prepared and analyzed by Raman spectroscopy. SE methods, Independent Component Analysis and Multivariate Curve Resolution, were then applied to spectral data for surfactant identification and quantification. The influence of several pre-processing treatments (normalization, baseline correction, scatter correction and smoothing) on SE performances were evaluated by experimental design. By using optimal pre-processing strategy, SE methods allowed satisfactorily both identifying and quantifying the four surfactants. When applied to the pre-processed Raman spectrum of the Ecolabel laundry detergent sample, SE models remained robust enough to predict the surfactant concentrations with sufficient precision for deformulation purpose. Comparatively, a supervised modeling technique (PLS regression) was very efficient to quantify the four surfactants in synthetic mixtures but appeared less effective than SE methods when applied to the Raman spectrum of the detergent sample. PLS seemed too sensitive to the other components contained in the laundry detergent while SE methods were more robust. The results obtained demonstrated the interest of SE methods in the context of deformulation.  相似文献   
995.
The structures of archaeal glycerophospholipids and glycolipids are unique in that they consist of phytanyl substituents ether linked to the glycerol backbone, imparting stability to the molecules. In this contribution, we described multiple-stage linear ion-trap combined with high resolution mass spectrometry toward structural characterization of this lipid family desorbed as lithiated adduct ions or as the [M−H] and [M−2H]2− ions by ESI. MSn on various forms of the lithiated adduct ions yielded rich structurally informative ions leading to complete structure identification of this lipid family, including the location of the methyl branches of the phytanyl chain. By contrast, structural information deriving from MSn on the [M−H] and [M−2H]2− ions is not complete. The fragmentation pathways in an ion-trap, including unusual internal loss of glycerol moiety and internal loss of hexose found for this lipid family were proposed. This mass spectrometric approach provides a simple tool to facilitate confident characterization of this unique lipid family.  相似文献   
996.
The development of analytical methods and strategies to determine gadolinium and its complexes in biological and environmental matrices is evaluated in this review.  相似文献   
997.
We investigate the success of the quantum chemical electron impact mass spectrum (QCEIMS) method in predicting the electron impact mass spectra of a diverse test set of 61 small molecules selected to be representative of common fragmentations and reactions in electron impact mass spectra. Comparison with experimental spectra is performed using the standard matching algorithms, and the relative ranking position of the actual molecule matching the spectra within the NIST‐11 library is examined. We find that the correct spectrum is ranked in the top two matches from structural isomers in more than 50% of the cases. QCEIMS, thus, reproduces the distribution of peaks sufficiently well to identify the compounds, with the RMSD and mean absolute difference between appropriately normalized predicted and experimental spectra being at most 9% and 3% respectively, even though the most intense peaks are often qualitatively poorly reproduced. We also compare the QCEIMS method to competitive fragmentation modeling for electron ionization, a training‐based mass spectrum prediction method, and remarkably we find the QCEIMS performs equivalently or better. We conclude that QCEIMS will be very useful for those who wish to identify new compounds which are not well represented in the mass spectral databases.  相似文献   
998.
A new type of chain transfer agent used in reversible addition fragmentation chain transfer (RAFT) polymerization named 9‐anthracenylmethyl (4‐cyano‐4‐(N‐carbazylcarbodithioate) pentanoate) (ACCP) was synthesized with a total yield over 75% by the incorporation of both fluorescent donor and acceptor chromophores. Polymerization of heterotelechelic α,ω end‐labeled dye‐functionalized polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n‐butyl methacrylate) (PBMA) with adjustable molecular weights and narrow polydispersity could be conducted by a one‐pot procedure through RAFT polymerization with this bischromophore chain transfer agent. The polymerizations demonstrated “living” controlled characteristics. By taking advantage of the characteristic fluorescence resonance energy transfer (FRET) response between the polymer chain terminals, the variation of chain dimensions in solution from the dilute region to the semidilute region can be monitored by changes in the ratio of the fluorescence intensities of the carbazolyl group to the anthryl group, which lends itself to potential applications in characterizing chain dimensions in solutions for thermodynamic or dynamic studies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2413–2420  相似文献   
999.
This study reports the synthesis and photophysical properties of a star‐shaped, novel, fluoranthene–tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation‐induced blue‐shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature‐dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6‐trinitrophenol (PA) with high sensitivity and a high Stern–Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70 % water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5 ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70 % exhibit high Stern–Volmer constants (Ksv=79 998 and 51 120 m ?1, respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra‐low‐level detection of PA for real‐time field analysis.  相似文献   
1000.
Resin‐based dental materials have raised debates concerning their safety and biocompatibility, resulting in a growing necessity of profound knowledge on the quantity of released compounds into the oral cavity. In this context, the aim of this study was to develop a comprehensive and reliable procedure based on liquid chromatography with mass spectrometry for the simultaneous analysis of various leached compounds (including bisphenol A based compounds) in samples from in vitro experiments. Different experiments were performed to determine the optimal analytical parameters, comprising mass spectrometry parameters, chromatographic separation conditions, and sample preparation. Four internal standards were used as follows: deuterated diethyl phthalate and bisphenol A (commercially available), and deuterated analogues of triethylene glycol dimethacrylate and urethane dimethacrylate (custom‐made). The optimized method was validated for linearity of the calibration curves and the associated correlation coefficient, lower limit of quantification, higher limit of quantification, and intra‐ and interassay accuracy and precision. Additionally, the developed liquid chromatography with tandem mass spectrometry method was applied to the analysis of leaching compounds from four resin‐based dental materials. The results indicated that this method is suitable for the analysis of different target compounds leaching from dental materials. This method might serve as a valuable basis for quick and accurate quantification of leached compounds from resin‐based dental materials in biological samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号