首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   13篇
  2022年   4篇
  2021年   6篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Pancreatic ductal adenocarcinoma and cholangiocarcinoma constitute two aggressive tumor types that originate from the epithelial lining of the excretory ducts of the pancreatobiliary tract. Given their close histomorphological resemblance, a correct diagnosis can be challenging and almost impossible without clinical information. In this study, we investigated whether mass spectrometric peptide features could be employed to distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Three tissue microarrays of formalin-fixed and paraffin-embedded material (FFPE) comprising 41 cases of pancreatic ductal adenocarcinoma and 41 cases of cholangiocarcinoma were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The derived peptide features and respective intensities were used to build different supervised classification algorithms: gradient boosting (GB), support vector machine (SVM), and k-nearest neighbors (KNN). On a pixel-by-pixel level, a classification accuracy of up to 95% could be achieved. The tentative identification of discriminative tryptic peptide signatures revealed proteins that are involved in the epigenetic regulation of the genome and tumor microenvironment. Despite their histomorphological similarities, mass spectrometry imaging represents an efficient and reliable approach for the distinction of PDAC from CC, offering a promising complementary or alternative approach to the existing tools used in diagnostics such as immunohistochemistry.  相似文献   
12.
Cholangiocarcinoma (CCA) is a highly lethal disease because most patients are asymptomatic until they progress to advanced stages. Current CCA diagnosis relies on clinical imaging tests and tissue biopsy, while specific CCA biomarkers are still lacking. This study employed a translational proteomic approach for the discovery, validation, and development of a multiplex CCA biomarker assay. In the discovery phase, label-free proteomic quantitation was performed on nine pooled plasma specimens derived from nine CCA patients, nine disease controls (DC), and nine normal individuals. Seven proteins (S100A9, AACT, AFM, and TAOK3 from proteomic analysis, and NGAL, PSMA3, and AMBP from previous literature) were selected as the biomarker candidates. In the validation phase, enzyme-linked immunosorbent assays (ELISAs) were applied to measure the plasma levels of the seven candidate proteins from 63 participants: 26 CCA patients, 17 DC, and 20 normal individuals. Four proteins, S100A9, AACT, NGAL, and PSMA3, were significantly increased in the CCA group. To generate the multiplex biomarker assays, nine machine learning models were trained on the plasma dynamics of all seven candidates (All-7 panel) or the four significant markers (Sig-4 panel) from 45 of the 63 participants (70%). The best-performing models were tested on the unseen values from the remaining 18 (30%) of the 63 participants. Very strong predictive performances for CCA diagnosis were obtained from the All-7 panel using a support vector machine with linear classification (AUC = 0.96; 95% CI 0.88–1.00) and the Sig-4 panel using partial least square analysis (AUC = 0.94; 95% CI 0.82–1.00). This study supports the use of the composite plasma biomarkers measured by clinically compatible ELISAs coupled with machine learning models to identify individuals at risk of CCA. The All-7 and Sig-4 assays for CCA diagnosis should be further validated in an independent prospective blinded clinical study.  相似文献   
13.
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two main types of primary liver cancer, and reliable discrimination is important for optimal treatment. Aberrant glycosylation was detected in HCC and ICC. Both cross-sectional and follow-up studies were performed to establish a differential diagnosis model using N-glycans. A total of 420 participants were enrolled, with 310 patients in training cohort and 110 patients in validation cohort. The follow-up cohort was used to assess the prognosis of ICC. As the results, the diagnostic efficacy of the model was superior to alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) when identifying ICC from HCC (AUC of the nomogram: 0.845, 95%CI: 0.788–0.902; AFP: 0.793, 95%CI: 0.732–0.854; CEA: 0.592, 95%CI: 0.496–0.687; CA 19-9: 0.674, 95%CI: 0.582–0.767) in training cohort. In validation cohort, this model (AUC: 0.810, 95% CI: 0.728–0.891) also demonstrated high efficacy in distinguishing ICC from HCC. Furthermore, the nomogram helps to stratify ICC into two subgroups with high or low risk of survival and recurrence. Therefore, a nomogram integrating six N-glycans [NGA2FB(Peak2), NG1A2F (Peak3), NA2 (Peak5), NA2F (Peak6), NA3 (Peak8) and NA4 (Peak11)] was established for ICC and HCC differentiation, and for prognosis assessment in ICC patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号