首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3014篇
  免费   178篇
  国内免费   548篇
化学   3429篇
晶体学   9篇
力学   15篇
综合类   16篇
数学   3篇
物理学   268篇
  2024年   9篇
  2023年   18篇
  2022年   45篇
  2021年   53篇
  2020年   86篇
  2019年   68篇
  2018年   65篇
  2017年   103篇
  2016年   103篇
  2015年   85篇
  2014年   116篇
  2013年   297篇
  2012年   129篇
  2011年   153篇
  2010年   139篇
  2009年   159篇
  2008年   181篇
  2007年   201篇
  2006年   188篇
  2005年   177篇
  2004年   175篇
  2003年   162篇
  2002年   151篇
  2001年   108篇
  2000年   114篇
  1999年   89篇
  1998年   69篇
  1997年   59篇
  1996年   77篇
  1995年   71篇
  1994年   64篇
  1993年   55篇
  1992年   52篇
  1991年   21篇
  1990年   20篇
  1989年   10篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
排序方式: 共有3740条查询结果,搜索用时 15 毫秒
991.
The effects of draw conditions were studied for initially amorphous melt‐spun poly(ethylene terephthalate) fibers in the presence of subcritical and supercritical (SC) CO2. Both in situ and posttreatment mechanical behavior along with morphological characteristics were investigated. Fibers soaked in subcritical CO2 could be drawn to 30% higher draw ratios (DRs) compared with fibers that were cold‐drawn. In situ force response measured with a custom apparatus showed that fibers in subcritical CO2 had no measurable resistance to deformation until strain hardening occurred. In contrast, fibers drawn in SC CO2 displayed a yield response, a significant decrease in ductility, and a significant difference in postyield behavior. Fibers drawn in subcritical CO2 showed slightly lower tensile properties compared with cold‐drawn samples whereas fibers treated in SC CO2 had much lower tensile properties because of the limited DR achieved. X‐ray diffraction studies indicated that CO2 enhances the development of the crystalline phase compared with cold‐drawn samples. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1881–1891, 1999  相似文献   
992.
The occurrence of a molecular complex between poly(ethylene oxide) (PEO) and p‐dihydroxybenzene (hydroquinone) has been determined using different experimental techniques such as differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). From DSC investigations, an ethylene oxide/hydroquinone molar ratio of 2/1 was deduced. During the heating, the molecular complex undergoes a peritectic reaction and spontaneously transforms into a liquid phase and crystalline hydroquinone (incongruent melting). A triclinic unit cell (a = 1.17 nm, b = 1.20 nm, c = 1.06 nm, α = 78°, β = 64°, γ = 115°), containing eight ethylene oxide (EO) monomers and four hydroquinone molecules, has been determined from the analysis of the X‐ray diffraction fiber patterns of stretched and spherulitic films. The PEO chains adopt a helical conformation with four monomers per turn, which is very similar to the 72 helix of the pure polymer. A crystal structure is proposed on the basis of molecular packing considerations and X‐ray diffraction intensities. It consists of a layered structure with an alternation of PEO and small molecules layers, both layers being stabilized by an array of hydrogen bonds. The morphology of PEO–HYD crystals was studied by small angle X‐ray scattering and DSC. As previously shown for the PEO–resorcinol complex, PEO–HYD samples crystallize with a lamellar thickness corresponding to fully extended or integral folded chains. The relative proportion of lamellae with different thicknesses depends on the crystallization temperature and time. Finally, the observed morphologies are discussed in terms of intermolecular interactions and chain mobility. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1197–1208, 1999  相似文献   
993.
Ordered poly(ethylene)‐poly(vinylcyclohexane) (PE‐PVCH) block copolymers are employed to study the crystallization of tethered PE in confined geometries. The high Tg of the PVCH component of these materials forces PE chains to crystallize in well‐defined geometries dictated by the mesophase structure of the block copolymer. Effects of chain tethering on crystallization are examined through comparison of singly‐tethered PE chains in PE‐PVCH (EV) diblocks and doubly‐tethered PE in PVCH‐PE‐PVCH (VEV) triblocks. Crystallinity is independent of the block copolymer mesophase structure in both the EV and VEV systems, although crystallinity in VEV depends on the molecular weight of the PE block of the copolymer. Melting temperature data indicate that spatial confinement reduces crystallite size in EV and VEV, and that the double tethering of PE chains in VEV reduces crystallite size further through topological constraints. Crystal nucleation and growth depend strongly on the type of microstructure in both EV and VEV block copolymers. Differences in the overall rate of crystallization are correlated with the dimensional continuity of the PE microdomains. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37:2053–2068, 1999  相似文献   
994.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   
995.
The basis‐set dependence and quasirelativistic and nonrelativistic effects on the Au C2H4 interaction are examined at the ab initio level. The effects on the interaction energies are modulated by f‐type polarization orbitals, using 19‐VE quasirelativistic pseudopotentials. Oscillation in the equilibrium Au C distance as well as in the interaction energy are sensitive to the electron correlation potential. These effects are evaluated at several levels of theory, ranging from MP2 to CCSD(T). The nature of the Au C2H4 interaction is related to a simple dispersion expression involving the individual properties of each component and its long‐distance behavior. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 317–324, 1999  相似文献   
996.
A new polymer with pendant hydroxyl groups, namely, poly(N-phenyl-2-hydroxytrime-thylene amine) (PHA), was synthesized by a direct condensation polymerization of aniline and epichlorohydrin in an alkaline medium. The new polymer is amorphous with a glass transition temperature (Tg) of 70°C. Blends of PHA with poly(ϵ-caprolactone) (PCL), as well as with two water-soluble polyethers, poly(ethylene oxide) (PEO) and poly(vinyl methyl ether) (PVME), were prepared by casting from a common solvent. It was found that all the three blends were miscible and showed a single, composition dependent glass transition temperature (Tg). FTIR studies revealed that PHA can form hydrogen bonds with PCL, PEO, and PVME, which are driving forces for the miscibility of the blends. © 1997 John Wiley & Sons, Inc.  相似文献   
997.
Binding constants of alkali picrates to poly(ethylene oxide)-based networks were measured spectrophotometrically in dioxane at 25 and 40°C. The networks were synthesized from aliphatic tri- or tetrafunctional isocyanates and α,ω-diamino-poly-(ethylene glycol)s. The slopes of the Klotz binding plots appear to decrease in the lower picrate concentration range, suggesting that binding of the salt becomes more difficult at high picrate content. It was shown that under saturation conditions six to seven ethylene oxide units are required to bind a sodium picrate ion pair. The affinity of the PEO-resins for the alkali picrate can be enhanced by immobilizing a poly(crown ether) in the network. A number of competition experiments for sodium picrate in toluene was also carried out to obtain the affinity of soluble ligands for alkali salts. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1819–1824, 1997  相似文献   
998.
The tensile properties of polyether-based polyurethane (PU) filaments decrease with increasing chlorine concentrations as well as with treatment times. Fourier transform infrared (FTIR) results show the formation of quinoid, azo, and aldehyde groups in the chlorine-treated PU, and increased hydrogen bonding between the C O C in the soft segment and the N H in the hard segments. A breakdown mechanism involving chain cleavages along the ether linkages in the soft segments as well as at the urethane linkages of the hard–soft segment interfaces is proposed. Chlorine-treated PU showed increased solubility in tetrahydrofuran (THF). The molecular weight data of the THF-soluble portion of treated PU also support the proposed locations of chain scissions. The increased soft segment Tg and Tm with increasing chlorine concentrations are results of increased phase-mixing and hydrogen bonding. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3263–3273, 1997  相似文献   
999.
Raman longitudinal acoustic mode (LAM) spectra have been obtained during isothermal crystallization from the melt at various temperatures of a poly(ethylene oxide) (PEO) fraction of molecular weight about 3000 and an α,ω-methoxylated fraction (MPEO) derived from it. For both fractions, we find that noninteger fold (NIF) chains are formed in the initial stages of crystallization. With time, and more rapidly at higher crystallization temperatures, the NIF chains transform into integer-fold (IF) structures. The final morphologies of the two fractions are similar, consisting of IF mixed-crystal lamellae composed mainly of extended (E) chains with embedded once-folded (F2) chains. This solid-state transformation from the NIF state may proceed through the F2 state. The effect of hydrogen bonds in the case of PEO is not to change the transformation process but to slow it when compared to MPEO. Comparison with small-angle x-ray scattering (SAXS) data indicates that in both cases the NIF chains are tilted to the lamellar surface and that the tilt from perpendicular eventually disappears as IF chains form at the later stages of crystallization. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1117–1126, 1997  相似文献   
1000.
This article deals with the characterization of the structural changes induced by uniaxial extension in the amorphous phase of an ethylene/butene copolymer. Volume change measurements indicate a reversible densification relevant to a strain-induced organization in the amorphous phase. The dynamic mechanical behavior shows an improvement of the β relaxation that reveals an important immobilization of the amorphous chains. The vibrational behavior investigated by means of Raman spectroscopy suggests that the strained amorphous chains are structurally analogous to the mesomorphic interfacial component. A discussion is made about the mechanism of the transformation of the amorphous phase into a mesomorphic structure compared to the more common strain-induced crystallization phenomenon. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2151–2159, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号