首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8309篇
  免费   991篇
  国内免费   1008篇
化学   8192篇
晶体学   34篇
力学   365篇
综合类   47篇
数学   344篇
物理学   1326篇
  2024年   21篇
  2023年   99篇
  2022年   228篇
  2021年   268篇
  2020年   453篇
  2019年   289篇
  2018年   263篇
  2017年   279篇
  2016年   430篇
  2015年   344篇
  2014年   436篇
  2013年   654篇
  2012年   428篇
  2011年   458篇
  2010年   404篇
  2009年   514篇
  2008年   460篇
  2007年   474篇
  2006年   483篇
  2005年   433篇
  2004年   418篇
  2003年   354篇
  2002年   224篇
  2001年   199篇
  2000年   205篇
  1999年   169篇
  1998年   166篇
  1997年   170篇
  1996年   142篇
  1995年   128篇
  1994年   108篇
  1993年   94篇
  1992年   83篇
  1991年   83篇
  1990年   66篇
  1989年   46篇
  1988年   46篇
  1987年   31篇
  1986年   23篇
  1985年   19篇
  1984年   20篇
  1983年   7篇
  1982年   21篇
  1981年   15篇
  1980年   19篇
  1979年   19篇
  1978年   10篇
  1973年   1篇
  1966年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
301.
溶剂在丁腈基聚氨酯中的溶解和扩散   总被引:2,自引:0,他引:2  
用石英弹簧法和示差扫描量热法 (DSC)、红外分光光度计 (FTIR)研究了苯、乙醇、丙酮、醋酸乙酯和1,2 二氯乙烷五种溶剂在端羟基聚丁二烯 丙烯腈共聚物为软段的聚氨酯中的溶解和扩散行为 .结果表明所有溶剂在丁腈聚氨酯中的扩散均为非费克扩散 ,且随着溶剂蒸汽压增大偏离费克扩散的程度增大 .相同相对蒸汽压下 1,2 二氯乙烷和醋酸乙酯偏离费克 (Fickian)扩散的程度较大 ,而乙醇、丙酮和苯则较小 ,这主要与它们和丁腈软段溶解度参数的极性分量和氢键分量有关 .1,2 二氯乙烷和苯在HTBN PU中的溶解度较高 ,而乙醇 ,醋酸乙酯和丙酮较低 ,主要与它们和丁腈软段溶解度参数的色散分量有关 .所有溶剂均表现出近似Flory Huggins型等温吸收曲线 .红外表明吸收溶剂后 ,氨基甲酸酯基团的氢键化程度有不同程度的下降 ,和溶剂与之形成氢键的能力大小有关 .力学性能表明非极性溶剂苯对材料的力学性能影响较小 ,而乙醇 ,醋酸乙酯和丙酮由于可与氨酯基团形成氢键 ,对原HTBN PU中氨酯键氢键的破坏大 ,力学性能下降大  相似文献   
302.
By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 °C in a temperature range of transparent sol below 30 °C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration Wp > 3.5% (w/v), corresponding to opaque gel above 30 °C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 °C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.  相似文献   
303.
Summary Packings and stationary phases applied to high resolution separations of proteins, enzymes, and nucleic acids must satisfy a series of distinct criteria that are different from those usually required by HPLC of low molecular weight non-biologically active analytes. These requirements have been met through substantial improvements in classical gel media together with novel developments in silica supports, and have led to a family of products with tailor-made and reproducible properties. Supports consisting of cross-linked organic gels, and inorganic materials (mostly silicas) are now available with graduated particle sizes, pore sizes, porosities and surface areas as well as non-porous beads. A whole range of stationary phases, such as reversed phase, hydrophobic interaction, ion exchanger and affinity packings, were designed for application as chemical sensors for biopolymer recognition in adsorptive chromatography. The phase systems are operated in the gradient mode, giving high resolution and high peak capacities. In addition, aqueous liquid-liquid partitioning systems have been developed for the fractionation of proteins and nucleic acids. Size exclusion media complete the set of HPLC variants enabling a discrimination of proteins according to their size and shape in an isocratic elution mode. Basically, protein purification and isolation is a multistage process where-by the HPLC variants are combined in a logistic sequence, utilizing the different selectivities of the phase systems and thus maximising resolution, speed and throughput.  相似文献   
304.
用三组份同时分离法氨化萃取分离Gd—Tb—Dy   总被引:1,自引:1,他引:1  
李涵  张卫星 《应用化学》1989,6(2):84-85
用普通分馏萃取工艺分离物质一次只能分离两个组份,若连续分离多种物质,则需很长工艺流程.文献[1]报导了用N_(26?)萃取分离La-Pr-Nd的三出口串级实验结果.本文报导用氨化HEH(EHP)同时萃取分离Gd-Tb-Dy的串级试验结果.  相似文献   
305.
利用静态交换与动态柱交换的方法对低硅KNaX沸石进行Li~+交换.用XRD, ICP测定样品的晶相及化学红外光谱对LSX在Li~+交换中的骨架振动进行了研究.结 果表明:在Li~+交换过程中,谱峰的位移与本身性质有关,而且与LSX骨架中的离 子位置有关.还探讨了在高交换度的Li-LSX样品上的空分性能布的关系.  相似文献   
306.
307.
308.
A novel doublet chirality transfer (DCT) model was demonstrated in cis poly(3,5‐disubstituted phenylacetylene)s, i.e., S‐I , R‐I , and S‐I‐NMe . The chiral message from the stereocenter of alkylamide substituent at 3‐position induced the polyene backbone to take cis‐transoid helical conformation with a predominant screw sense. And in turn the helical backbone acted as a scaffold to orient the pyrene probes, which was linked to phenyl rings through 5‐position, to array in an asymmetric manner. A combinatory analyses of 1H NMR, Raman, FTIR, UV‐vis absorption, CD, and computer simulation suggested that the main‐chain stereostructure, solvent nature, and intramolecular hydrogen bonds played important and complex roles on DCT. High cis‐structure content and intramolecular hydrogen bonds were beneficial for the realization of DCT. Reversible helix‐helix transition was observed in S‐I by changing the nature of solvents. In DMF, S‐I adopted a relatively contracted helix, where the main chain exhibited strong optical activity, but that of pyrene was weak. In contrast, a relatively stretched helix formed in CHCl3, in which the optical activity of pyrene was much larger, whereas that of the polyene backbone was the weakest. This helix‐helix transition was attributed to the intramolecular hydrogen bonds, which was confirmed by solution‐state FTIR spectra and computer calculations.  相似文献   
309.
Glass capillary gas chromatography is a high resolution separation method which allows the qualitative and quantitative analysis of even complex mixtures, which may contain many components–also isomeric–in a wide range of volatilities, polarities and concentrations. The principal limitation of gas chromatographic application is given by an insufficient volatility of the species to be separated. Elevated temperatures have to be applied if the application range is to be extended and to achieve steep peak profiles, i.e. low detection limits at high resolution. The use of elevated temperatures is limited, of course, by the temperature stability of both the solvent (stationary liquid and support) and the solutes. The problems of trace analysis for low volatility compounds at high resolution and its limitational parameters regarding sampling, separation and detection are discussed. The applicability of glass capillary columns in this field is influenced by the following parameters: tailing behaviour; irreversible adsorption of polar and decomposition of unstable solutes; thermal stability of stationary liquid (including the support deactivation); separation efficiency and sample capacity (film thickness). Multidimensional gas chromatography using capillary columns coupled either with a packed or another capilllary column for preseparations may be applied with advantage in the analysis of complex mixtures.  相似文献   
310.
Two ligand exchange chiral stationary phases (CSPs) based on (S)-leucinol derivative, sodium N-((S)-1-hydroxymethyl-3-methylbutyl)-N-undecylaminoacetate, and (R)-phenylglycinol derivative, sodium N-((R)-2-hydroxy-1-phenylethyl)-N-undecylaminoacetate, covalently bonded to silica gel have been successfully applied in the resolution of nine -hydroxycarboxylic acids. The latter was more effective than the former, the separation factors () being 1.05 to 2.12 while the resolution factors (RS) varying from 0.18 to 5.29 on the latter. The chromatographic resolution behaviors were dependent on the type and the content of organic modifier and the content of CuSO4 in aqueous mobile phase and the column temperature. A possible chiral recognition mechanism was also proposed based on the chromatographic resolution behaviors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号