首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1689篇
  免费   390篇
  国内免费   114篇
化学   2074篇
晶体学   12篇
力学   2篇
数学   9篇
物理学   96篇
  2024年   3篇
  2023年   23篇
  2022年   53篇
  2021年   70篇
  2020年   149篇
  2019年   87篇
  2018年   69篇
  2017年   39篇
  2016年   131篇
  2015年   119篇
  2014年   144篇
  2013年   151篇
  2012年   112篇
  2011年   124篇
  2010年   96篇
  2009年   112篇
  2008年   112篇
  2007年   120篇
  2006年   110篇
  2005年   91篇
  2004年   76篇
  2003年   70篇
  2002年   14篇
  2001年   17篇
  2000年   13篇
  1999年   6篇
  1998年   4篇
  1997年   32篇
  1996年   16篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2193条查询结果,搜索用时 14 毫秒
71.
The PtII-coordination complex [PtCl2(DAB)] (DAB=2,3-diaminobutane) belongs to a class of cytotoxic cisplatin analogues that contain chiral diamine ligands. Enantiomeric pairs of these compounds have attracted particular interest because they have different effects on different DNA conformations, which, in turn, influences the binding of damaged-DNA-processing enzymes that control downstream effects of the adducts, and thus exhibit different biological activities of the enantiomers. Herein, we studied the translesion synthesis across the major 1,2-d(GG) intrastrand cross-link formed by the R,R and S,S enantiomers of [Pt(DAB)]2+ in the TGGT sequence by using the enzyme that catalyzes the polymerization of deoxyribonucleotides into a DNA strand. We also employed differential scanning calorimetry (DSC) to measure the thermodynamic changes associated with replication-bypass past 1,2-d(GG) adducts of the [Pt(DAB)]2+ enantiomers. In the sequence TGGT, the 1,2-d(GG) intrastrand cross-links that were formed by the enantiomeric pairs of [Pt(DAB)]2+ inhibited DNA polymerization in a chirality-dependent manner. The thermodynamic data helped to understand the effect of the alterations in thermodynamic stability of DNA caused by the Pt-d(GG) adducts upon DNA polymerization across these lesions. Moreover, these data can possibly explain the influence of these alterations on the ability of many DNA polymerases to bypass adducts of antitumor platinum drugs. These results also highlighted the usefulness of DSC in evaluating the impact of DNA adducts of platinum-coordinated compounds on the processing of these lesions by damaged-DNA processing-enzymes.  相似文献   
72.
The aldol reactions of 2‐arylimino‐3‐aryl‐thiazolidine‐4‐ones with benzaldehyde carried out at ?78 °C were found to produce sec‐carbinols. Intramolecular hydrogen bonding within the aldol products forming a six‐membered ring enabled the assignment of stereochemistries of the major and minor diastereomers via analysis of the syn and anti 3JH,H 1H NMR coupling constants. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
73.
Mechanically interlocked molecules (MIMs) have gained attention in the field of catalysis due to their unique molecular properties. Central to MIMs, rotaxanes are highly promising and attractive supramolecular catalysts due to their unique three-dimensional structures and the flexibility of their subcomponents. This Minireview discusses the use of rotaxanes in organocatalysis and transition-metal catalysis.  相似文献   
74.
《中国化学》2018,36(7):587-593
An organocatalytic approach for direct conversion of racemic diarylmethanols to valuable chiral diarylmethylamines is described. Different from the previously reported elegant “borrowing hydrogen” approach, the present process employs a distinct complementary formal SN1 strategy. This approach enjoys excellent enantioselectivity, mild conditions, broad scope, and easy product derivatization. Mechanistically, control experiments also provided important insights into some notable features, such as substrate kinetic resolution and reversibility as well as the critical role of the ortho‐ hydroxy group in the substrate.  相似文献   
75.
The understanding of structure–function relationships within synthetic biomimetic systems is a fundamental challenge in chemistry. Herein we report the direct correlation between the structure of short peptoid ligands—N-substituted glycine oligomers incorporating 2,2′-bipyridine groups—varied in their monomer sequence, and the photoluminescence of RuII centers coordinated by these ligands. Based on circular dichroism and fluorescence spectroscopy we demonstrate that while helical peptoids do not affect the fluorescence of the embedded RuII chromophore, unstructured peptoids lead to its significant decay. Transmittance electron microscopy (TEM) revealed significant differences in the arrangements of metal-bound helical versus unstructured peptoids, suggesting that only the latter can have through-space interactions with the ruthenium dye leading to its quenching. High-resolution TEM enabled the remarkable direct imaging of singular ruthenium-bound peptoids and bundles, supporting our explanation for structure-depended quenching. Moreover, this correlation allowed us to fine-tune the luminescence properties of the complexes simply by modifying the sequence of their peptoid ligands. Finally, we also describe the chiral properties of these Ru–peptoids and demonstrate that remote chiral induction from the peptoids backbone to the ruthenium center is only possible when the peptoids are both chiral and helical.  相似文献   
76.
As chiral molecules, naturally occurring d -oligonucleotides have enantiomers, l -DNA and l -RNA, which are comprised of l -(deoxy)ribose sugars. These mirror-image oligonucleotides have the same physical and chemical properties as that of their native d -counterparts, yet are highly orthogonal to the stereospecific environment of biology. Consequently, l -oligonucleotides are resistant to nuclease degradation and many of the off-target interactions that plague traditional d -oligonucleotide-based technologies; thus making them ideal for biomedical applications. Despite a flurry of interest during the early 1990s, the inability of d - and l -oligonucleotides to form contiguous Watson–Crick base pairs with each other has ultimately led to the perception that l -oligonucleotides have only limited utility. Recently, however, scientists have begun to uncover novel strategies to harness the bio-orthogonality of l -oligonucleotides, while overcoming (and even exploiting) their inability to Watson–Crick base pair with the natural polymer. Herein, a brief history of l -oligonucleotide research is presented and emerging l -oligonucleotide-based technologies, as well as their applications in research and therapy, are presented.  相似文献   
77.
Vibrational circular dichroism (VCD) studies are reported on a chiral compound in which a fullerene C60 moiety is used as an electron acceptor and local VCD amplifier for an alanine-based peptide chain. Four redox states are investigated in this study, of which three are reduced species that possess low-lying electronic states as confirmed by UV/Vis spectroelectrochemistry. VCD measurements in combination with (TD)DFT calculations are used to investigate (i) how the low-lying electronic states of the reduced species modulate the amplification of VCD signals, (ii) how this amplification depends on the distance between oscillator and amplifier, and (iii) how the spatial extent of the amplifier influences amplification. These results pave the way for further development of tailored molecular VCD amplifiers.  相似文献   
78.
Methionine (Met) oxidation is an important biological redox node, with hundreds if not thousands of protein targets. The process yields methionine oxide (MetO). It renders the sulfur chiral, producing two distinct, diastereomerically related products. Despite the biological significance of Met oxidation, a reliable protocol to separate the resultant MetO diastereomers is currently lacking. This hampers our ability to make peptides and proteins that contain stereochemically defined MetO to then study their structural and functional properties. We have developed a facile method that uses supercritical CO2 chromatography and allows obtaining both diastereomers in purities exceeding 99 %. 1H NMR spectra were correlated with X-ray structural information. The stereochemical interconversion barrier at sulfur was calculated as 45.2 kcal mol−1, highlighting the remarkable stereochemical stability of MetO sulfur chirality. Our protocol should open the road to synthesis and study of a wide variety of stereochemically defined MetO-containing proteins and peptides.  相似文献   
79.
80.
Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号