首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1791篇
  免费   72篇
  国内免费   229篇
化学   1874篇
晶体学   8篇
力学   21篇
综合类   13篇
数学   12篇
物理学   164篇
  2024年   6篇
  2023年   15篇
  2022年   74篇
  2021年   71篇
  2020年   58篇
  2019年   42篇
  2018年   49篇
  2017年   71篇
  2016年   81篇
  2015年   53篇
  2014年   60篇
  2013年   149篇
  2012年   66篇
  2011年   65篇
  2010年   65篇
  2009年   89篇
  2008年   114篇
  2007年   79篇
  2006年   102篇
  2005年   102篇
  2004年   61篇
  2003年   55篇
  2002年   58篇
  2001年   53篇
  2000年   52篇
  1999年   50篇
  1998年   54篇
  1997年   49篇
  1996年   56篇
  1995年   49篇
  1994年   33篇
  1993年   16篇
  1992年   16篇
  1991年   21篇
  1990年   3篇
  1989年   8篇
  1988年   14篇
  1987年   5篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有2092条查询结果,搜索用时 15 毫秒
41.
Thermoplastic composites were prepared using two continuous regenerated cellulose fiber types, rayon and lyocell, and with several different commercially-available thermoplastic cellulose esters as matrix. Matrix options included cellulose acetate propionate (CAP), and several cellulose acetate butyrates (CAB) with different butyryl content, having different molecular weights and different methods of plasticization (adipates and very low molecular weight cellulose ester fractions). Choice of cellulose ester type was generally found to have little or no effect on mechanical properties. A significant effect, however, was revealed for fiber type. The lyocell-based composites thereby were reflective of the greater stiffness of a fiber produced from anisotropic solution state. Their modulus consistently exceeded 20GPa whereas the rayon fiber-based composites had moduli between 6 and 8GPa. The latter, however, possessed failure strains that were 3 to 4 times greater than their stiffer counterparts.  相似文献   
42.
《先进技术聚合物》2018,29(5):1507-1517
Water‐induced mechanically adaptive rubber nanocomposites were prepared by mixing bacterial cellulose whiskers (BCWs) suspension with styrene‐butadiene rubber (SBR) latex, followed by evaporation method. The structure, morphology, dynamic mechanical properties, water stimuli‐responsive behavior, and biodegradability of SBR/BCWs nanocomposite films were investigated. The results showed that the hydrophilic whiskers had a significant reinforcement effect on the storage modulus of SBR matrix, which originated from the formation of a rigid three‐dimensional filler network within matrix by strong hydrogen bonding between whiskers. The SBR/BCWs nanocomposites showed pronounced water stimuli‐responsive behavior compared with neat SBR. The storage modulus of SBR/BCWs nanocomposite could be decreased by 99.2% after equilibrium water swelling. This remarkable water‐triggered modulus change is attributed to the disentanglement of BCWs network via competitive hydrogen bonding with water.  相似文献   
43.
Cellulose/silver nanoparticle composite films with in situ-generated silver nanoparticles (AgNPs) were prepared using Ocimum sanctum leaf extract as a reducing agent in the absence and presence of sunlight and were characterized by SEM, FTIR, XRD, and antibacterial tests. Sunlight hastened up the preparation of these composite films. The average size of the in situ-generated AgNPs was reduced by the sunlight. The antibacterial activity and other properties of the composites were enhanced by the sunlight. The cellulose/AgNP composite films with improved properties by sunlight can be considered for medical purpose as antibacterial dressing materials.  相似文献   
44.
We derived typical phase diagrams for aqueous solutions of methyl cellulose (MC) of different molecular weights via micro‐differential scanning calorimetry, small‐angle X‐ray scattering, and visual inspection. The phase diagrams showed the cooccurrence of gelation and phase separation and qualitatively agreed with the theoretically calculated diagrams. The sol–gel transition line and phase separation line of a lower critical solution point type shifted toward lower temperatures and lower concentrations with an increase in the MC molecular weight. The sol–gel transition line intersected at a temperature higher than the critical point of the phase separation; therefore, both sol–gel phase separation and gel–gel phase separation were possible, depending on the temperature. Specifically, through visual inspection of a high molecular weight MC sample in the critical temperature region, we observed phase separation into two coexisting gels with different polymer concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 91–100, 2001  相似文献   
45.
Enzyme-catalyzed transesterification of several cellulose solids in organic media have been investigated. Several protease enzymes were made soluble in organic media through ion-paired enzyme–surfactant complexes. Subtilisin Carsberg was found to be catalytically active in the transesterification of cellulose with vinyl propionate and vinyl acrylate in anhydrous pyridine. The ester carbonyl groups in acylated cellulose derivatives were confirmed by Fourier transform infrared spectroscopy. The surfaces of these cellulose derivatives became hydrophobic as demonstrated by increased water-contact angles. The enzyme-catalyzed transesterification was confirmed to regioselectively target the primary hydroxyl group of cellulose by reactions on specifically substituted cellulose. The cellulose esters from enzyme-catalyzed transesterification could be hydrolyzed partially by the same enzyme in aqueous media, and were thus biodegradable. Surface grafting of cellulose acrylate was demonstrated using azobisisobutyronitrile-initiated polymerization of acrylonitrile in dimethylformamide. Polyacrylonitrile (PAN)-g-cellulose shows a different thermal behavior from cellulose, homopolymer PAN, and PAN/cellulose blends. The grafted PAN on PAN-g-cellulose at a 16% grafting add-on is incapable of cyclization. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1931–1939, 2001  相似文献   
46.
Solid-state (13)C-NMR spectroscopy was used to characterize native cellulose pellicles from two strains of Gluconacetobacter xylinus (ATCC 53582, ATCC 23769), which had been statically cultivated in Hestrin-Schramm (HS) medium containing fully (13)C-labeled beta-D-glucose-U-(13)C(6) as the sole source of carbon. For both samples, the (13)C-NMR chemical shifts were completely assigned for each (13)C-labeled site of cellulose I(alpha) with the aid of 2D refocused INADEQUATE NMR. To determine the principal chemical shift tensor components, a pulse sequence based on the recoupling of anisotropy information (RAI) was applied at 10 kHz MAS. The detailed (13)C tensors of cellulose I(alpha) from different bacterial celluloses are thus available now for the first time, and these results have been compared with previously published data of nonenriched material and with theoretical predictions.  相似文献   
47.
48.
采用silicalite-1对HY型分子筛进行修饰,得到具有核壳结构的复合分子筛HY/silicalite-1。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2的吸附-脱附及吡啶吸附红外(Py-FTIR)等手段对不同晶化时间合成的HY/silicalite-1复合分子筛进行了表征,研究了复合分子筛对纤维素水解的催化性能。结果表明,晶化时间直接影响复合分子筛的晶体生长规律和两组分的相对含量,最佳晶化时间为16-24 h,所得到的复合分子筛外貌呈核壳结构,silicalite-1附晶生长在HY型分子筛的表面;随着晶化时间的延长,复合分子筛的表面由胶浊状变为光滑,最终变为鳞片状;其B酸量先减少后增加,而L酸量则先增加后减少。其中,晶化时间为24 h的HY/silicalite-1复合分子筛B酸量最大,L酸量最小,对纤维素水解反应具有良好的催化性能,葡萄糖收率由HY型分子筛催化获得的28.0%大幅提高至45.8%。  相似文献   
49.
Summary: Three different cellulosic substrata, like microcrystalline cellulose, cotton cellulose and spruce dissolving pulp, were chosen for biodegradation. The kinetics of the enzymatic hydrolysis of these celluloses by Trichoderma reesei, has been investigated. The experiments proved the fact that both the morphological structure and the crystalline one are crucial to the process and the ratio of the reactions. In addition, in order to obtain the most accessible cellulose substratum it was studied the biodegradation of cellulose allomorphs of spruce dissolving pulp. The insoluble cellulose fraction remaining after enzymatic hydrolysis was examined by X-ray diffraction method and it was established the degree of crystallinity and the average crystallite size. The enzymatic degradation is also proved by the decrease in the degree of polymerization of hydrolyzed samples.  相似文献   
50.
本文对2,6-二氨基嘌呤(DAP)在不同的基质上和不同的重原子微扰剂存在下的室温燐光(RTP)强度进行比较,结果表明,NaI-NaAc是有效的重原子体系。适宜的固体基质为阴离子交换纤维素(二乙氨基乙基纤维素)膜(DEAE)和慢速定量滤纸。前者对酸度的变化具有较好的缓冲能力,本文提出了以DEAE为固体基质,测定痕量DAP的RTP法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号