首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22770篇
  免费   3965篇
  国内免费   4158篇
化学   17535篇
晶体学   405篇
力学   2213篇
综合类   256篇
数学   1692篇
物理学   8792篇
  2024年   59篇
  2023年   347篇
  2022年   977篇
  2021年   961篇
  2020年   1048篇
  2019年   855篇
  2018年   831篇
  2017年   995篇
  2016年   1243篇
  2015年   1099篇
  2014年   1483篇
  2013年   2260篇
  2012年   1612篇
  2011年   1682篇
  2010年   1290篇
  2009年   1445篇
  2008年   1482篇
  2007年   1510篇
  2006年   1310篇
  2005年   1163篇
  2004年   1038篇
  2003年   910篇
  2002年   702篇
  2001年   632篇
  2000年   599篇
  1999年   472篇
  1998年   468篇
  1997年   365篇
  1996年   328篇
  1995年   276篇
  1994年   287篇
  1993年   220篇
  1992年   200篇
  1991年   123篇
  1990年   99篇
  1989年   98篇
  1988年   89篇
  1987年   57篇
  1986年   54篇
  1985年   48篇
  1984年   37篇
  1983年   14篇
  1982年   31篇
  1981年   14篇
  1980年   19篇
  1979年   19篇
  1978年   11篇
  1973年   7篇
  1971年   5篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
761.
A simple, fast and general approach for quantitative analysis of scanning probe microscopy (SPM) images is reported. As a proof of concept it is used to determine with a high degree of precision the value of observables such as 1) the height, 2) the flowing current and 3) the corresponding surface potential (SP) of flat nanostructures such as gold electrodes, organic semiconductor architectures and graphenic sheets. Despite histogram analysis, or frequency count (Fc), being the most common mathematical tool used to analyse SPM images, the analytical approach is still lacking. By using the mathematical relationship between Fc and the collected data, the proposed method allows quantitative information on observable values close to the noise level to be gained. For instance, the thickness of nanostructures deposited on very rough substrates can be quantified, and this makes it possible to distinguish the contribution of an adsorbed nanostructure from that of the underlying substrate. Being non‐numerical, this versatile analytical approach is a useful and general tool for quantitative analysis of the Fc that enables all signals acquired and recorded by an SPM data array to be studied with high precision.  相似文献   
762.
The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear‐dependent cancer cell capture in a novel hybrid DEP–immunocapture system consisting of interdigitated electrodes fabricated in a Hele‐Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate‐specific membrane antigen expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP–immunocapture systems for high‐efficiency CTC capture with enhanced purity.  相似文献   
763.
In order to explore the role of fluorine atoms on photostability as well as morphology control of active layer in the presence of 1,4‐butanedithiol (BT), the four polymers with or without fluorine atoms in the backbones including polythieno[3,4‐b]thiophene/benzodithiophene, poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo(1,2‐b:4,5‐b9)dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene‐)‐2‐6‐diyl)], poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)], and poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl]‐alt‐[2‐(20‐ethyl‐hexanoyl)‐thieno [3,4‐b]thiophen‐4,6‐diyl] were selected for comparison. It is found that the specimens containing fluorine atoms in polymer backbones showed of higher stability after illumination for 1 h in the presence of BT additive, contributing to the higher domain purity. The specific interaction between fluorine atoms and thiol groups was demonstrated by the appearance of novel absorption peak at 2663.1 cm?1, in addition to the broadening of peak at 2556.2 cm?1 ascribing to S? H stretching vibration as confirmed by Fourier transform infrared (FTIR) spectroscopy. The finding may guide the accurate use of thiols as effective solvent additive in morphology and stability optimization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 941–951  相似文献   
764.
Response surface methodology (RSM),based on five‐level, four variable Box‐Benkhen technique was investigated for modeling the average fiber diameter of electrospun polyacrylonitrile (PAN) nanofibers. The four important electrospinning parameters were studied including applied voltage (kV), Berry's number, deposition distance from nozzle to collector (cm), and spinning angle (? in degree). The measured fiber diameters were in a good agreement with the predicted results by using RSM technique. High‐regression coefficient between the variables and the response (R2 = 87.74%) indicates excellent evaluation of experimental data by second‐order polynomial regression model. The optimum PAN average fiber diameters of 208 and 37‐nm standard deviation were collected at 19 kV, Berry's number = 10, 25° spinning angle, and 16‐cm deposition distance. The PAN/N,N‐dimethylformamide (DMF) polymer solution with the optimum weight concentration (10 wt.%) was selected to study the effect of dispersing exfoliated graphite nanoplatelets (EGNPs) in PAN/DMF solution on the electrospun EGNP/PAN fibril composite diameter. Five different EGNPs weight concentrations (2, 4, 6, 8, and 10 wt.%) were dispersed in the optimized PAN/DMF polymer solution. Morphology of EGNPs/PAN fibril composites and its distribution were investigated by scanning electron microscopy (SEM) to show the minimum fiber diameter for the above‐mentioned 5 wt. % of EGNPs. A minimum fibril composite diameter of 182 nm was obtained at 10 wt.% of EGNPs. Morphological characteristics of electrospun fibers and their distribution were tested by Raman spectroscopy, SEM, differential light scattering, and high‐resolution transmission electron microscopy.  相似文献   
765.
Abstract

The recovery of antioxidants from basil (Ocimum basilicum L.) was modeled with the aid of response surface methodology (RSM) using microwave-assisted extraction (MAE). Face-centered central design (FCCD) was employed to optimize the MAE operational parameters including the extraction time (1 to 7?min), extraction temperature (30 to 120?°C), solid-to-solvent ratio (0.1 to 0.4), and solvent concentration (20 to 80% ethanol, v/v), and to obtain the best possible combinations of these parameters for a high antioxidant yield from basil. The total antioxidant capacity (TAC) was expressed in trolox (TR) equivalents per gram of dried sample (DS). Three of the operational parameters (temperature, extraction time and solvent concentration) were shown to have significant effect on the extraction efficiency of antioxidants in basil extracts (p?<?0.05). The solvent concentration was shown to be the most significant factor on antioxidant yield obtained by MAE. There was a close relationship between experimental and predicted values using the proposed method. This optimized MAE method shows an application potential for the efficient extraction of antioxidants from basil in the food and pharmaceutical industries.  相似文献   
766.
High-temperature (700–900 ℃) steam electrolysis based on solid oxide electrolysis cells (SOECs) is valuable as an efficient and clean path for large-scale hydrogen production with nearly zero carbon emissions, compared with the traditional paths of steam methane reforming or coal gasification. The operation parameters, in particular the feeding gas composition and pressure, significantly affect the performance of the electrolysis cell. In this study, a computational fluid dynamics model of an SOEC is built to predict the electrochemical performance of the cell with different sweep gases on the oxygen electrode. Sweep gases with different oxygen partial pressures between 1.01 × 103 and 1.0 × 105 Pa are fed to the oxygen electrode of the cell, and the influence of the oxygen partial pressure on the chemical equilibrium and kinetic reactions of the SOECs is analyzed. It is shown that the rate of increase of the reversible potential is inversely proportional to the oxygen partial pressure. Regarding the overpotentials caused by the ohmic, activation, and concentration polarization, the results vary with the reversible potential. The Ohmic overpotential is constant under different operating conditions. The activation and concentration overpotentials at the hydrogen electrode are also steady over the entire oxygen partial pressure range. The oxygen partial pressure has the largest effect on the activation and concentration overpotentials on the oxygen electrode side, both of which decrease sharply with increasing oxygen partial pressure. Owing to the combined effects of the reversible potential and polarization overpotentials, the total electrolysis voltage is nonlinear. At low current density, the electrolysis cell shows better performance at low oxygen partial pressure, whereas the performance improves with increasing oxygen partial pressure at high current density. Thus, at low current density, the best sweep gas should be an oxygen-deficient gas such as nitrogen, CO2, or steam. Steam is the most promising because it is easy to separate the steam from the by-product oxygen in the tail gas, provided that the oxygen electrode is humidity-tolerant. However, at high current density, it is best to use pure oxygen as the sweep gas to reduce the electric energy consumption in the steam electrolysis process. The effects of the oxygen partial pressure on the power density and coefficient of performance of the SOEC are also discussed. At low current density, the electrical power demand is constant, and the efficiency decreases with growing oxygen partial pressure, whereas at high current density, the electrical power demand drops, and the efficiency increases.  相似文献   
767.
有机太阳能电池(OSC)经过长期的发展,其能量转换效率(PCE)已快速推进至14%–16%,基本接近可商业化应用的范围,但在目前所见报道的高效率OSC器件的制备过程中,活性层薄膜的加工大多采用氯苯、二氯苯、氯仿等毒性较高的含卤/芳香性试剂,此类试剂对环境及人类健康的危害非常高。在本工作中,我们基于已报道的高效率给体共轭聚合物PBDB-T,通过扩大共轭侧链结构与增长柔性烷基侧链的方式,合成了新型给体聚合物PBDB-DT。PBDB-DT中较长的柔性烷基侧链保证了其在低毒性溶剂四氢呋喃(THF)溶液中良好的溶解度,同时,扩大的共轭侧链也有效增强了其在THF中的溶液聚集作用,这一特性对于在非富勒烯型OSC器件中获得较好的光伏性能尤其重要。当采用非富勒烯小分子IT-M作为电子受体材料时,以THF为主溶剂加工的基于PBDB-DT:IT-M的OSC器件可以获得10.2%的能量转换效率。  相似文献   
768.
构建了标准差标准化方法修正的兼具多溴联苯(PBBs)分子红外振动强度、 生物富集性和毒性3种效应的CoMFA模型, 分析了PBBs分子力场对其综合值的影响, 确定取代位点, 并进行兼具易红外光谱检出、 低生物富集性和毒性特征的PBB分子修饰(以PBB-153为例). 研究结果表明, 构建的CoMFA模型对PBBs分子的红外振动强度、 生物富集性和毒性3种效应综合值具有较好的预测和拟合能力, 且具有较好的稳定性, 静电场和立体场的贡献率分别为59.9%和40.1%. 根据模型三维等势图选择正电性高于Br原子的5种取代基团对目标分子PBB-153进行单、 双取代, 筛选出6个3种效应综合值上升的PBB-153衍生物. PBBs衍生物分子单效应计算或预测结果验证表明所构建的兼具PBBs分子红外振动强度、 生物富集性和毒性3种效应综合值的CoMFA模型可以有效应用于PBBs分子的修饰. 设计的PBB-153衍生物分子具有较好的稳定性, 同时阻燃性与目标分子相当, 环境持久性及迁移性方面优于目标分子. 2D-QSAR模型表明, PBBs分子的偶极矩、 最负电荷及邻位Br原子数对其红外振动强度、 生物富集性和毒性单效应和综合值影响趋势一致.  相似文献   
769.
Selective modification of natural proteins is a daunting methodological challenge and a stringent test of selectivity and reaction scope. There is a continued need for new reactivity and new selectivity concepts. Transition metals exhibit a wealth of unique reactivity that is orthogonal to biological reactions and processes. As such, metal‐based methods play an increasingly important role in bioconjugation. This Review examines metal‐based methods as well as their reactivity and selectivity for the functionalization of natural proteins and peptides.  相似文献   
770.
The aim of this investigation was to develop receiver and extraction fluids, and subsequently validate an analytical method to quantify the permeation and penetration of flurbiprofen into human pharynx tissue using a Franz diffusion cell. The solubility and stability of flurbiprofen in a suitable receiver fluid, and a suitable extraction method and fluid to recover and quantitate flurbiprofen from human pharynx tissue, were investigated using high‐performance liquid chromatography (HPLC). The potential interference of human pharynx tissue in the receiver fluid was also investigated. The HPLC analytical method was successfully validated according to current guidelines. The final receiver fluid demonstrated sufficient solubility and stability, and the extraction method and fluid resulted in >95% recovery of flurbiprofen following exposure to human pharynx tissue. The lower limit of quantitation of flurbiprofen was 0.045 μg/mL in both the receiver and extraction fluids. There was no interference of the human pharynx tissue with the HPLC method. This investigation validated an analytical method for quantitating flurbiprofen, and determined a suitable receiver fluid and extraction method and fluid, which can be used to investigate the permeation and penetration of flurbiprofen through human pharynx tissue using the Franz diffusion cell method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号