首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6018篇
  免费   927篇
  国内免费   1306篇
化学   5644篇
晶体学   126篇
力学   367篇
综合类   87篇
数学   212篇
物理学   1815篇
  2024年   19篇
  2023年   112篇
  2022年   398篇
  2021年   430篇
  2020年   334篇
  2019年   276篇
  2018年   232篇
  2017年   317篇
  2016年   380篇
  2015年   348篇
  2014年   443篇
  2013年   642篇
  2012年   447篇
  2011年   483篇
  2010年   310篇
  2009年   417篇
  2008年   416篇
  2007年   348篇
  2006年   297篇
  2005年   271篇
  2004年   230篇
  2003年   180篇
  2002年   141篇
  2001年   99篇
  2000年   88篇
  1999年   82篇
  1998年   74篇
  1997年   70篇
  1996年   43篇
  1995年   38篇
  1994年   30篇
  1993年   52篇
  1992年   43篇
  1991年   25篇
  1990年   16篇
  1989年   20篇
  1988年   26篇
  1987年   12篇
  1986年   10篇
  1985年   15篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1973年   2篇
  1971年   2篇
  1959年   1篇
  1957年   1篇
排序方式: 共有8251条查询结果,搜索用时 0 毫秒
191.
The quality of perovskite layers has a great impact on the performance of perovskite solar cells (PSCs). However, defects and related trap sites are generated inevitably in the solution-processed polycrystalline perovskite films. It is meaningful to reduce and passivate the defect states by incorporating additive into the perovskite layer to improve perovskite crystallization. Here an environmental friendly 2D nanomaterial protonated graphitic carbon nitride (p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document}) was successfully synthesized and doped into perovskite layer of carbon-based PSCs. The addition of p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} into perovskite precursor solution not only adjusts nucleation and growth rate of methylammonium lead tri-iodide (MAPbI\begin{document}$_3$\end{document}) crystal for obtaining flat perovskite surface with larger grain size, but also reduces intrinsic defects of perovskite layer. It is found that the p-g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} locates at the perovskite core, and the active groups -NH\begin{document}$_2$\end{document}/NH\begin{document}$_3$\end{document} and NH have a hydrogen bond strengthening, which effectively passivates electron traps and enhances the crystal quality of perovskite. As a result, a higher power conversion efficiency of 6.61% is achieved, compared with that doped with g-C\begin{document}$_3$\end{document}N\begin{document}$_4$\end{document} (5.93%) and undoped one (4.48%). This work demonstrates a simple method to modify the perovskite film by doping new modified additives and develops a low-cost preparation for carbon-based PSCs.  相似文献   
192.
An ion chromatography system employing a low-cost three-dimensional printed absorbance detector for indirect ultraviolet detection towards portable phosphate analysis of environmental and industrial waters has been developed. The optical detection cell was fabricated using stereolithography three-dimensional printing of nanocomposite material. Chromatographic analysis and detection of phosphate were carried out using a CS5A 4 × 250 mm analytical column with indirect ultraviolet detection using a 255 nm light-emitting diode. Isocratic elution using a 0.6 mM potassium phthalate eluent combined with 1.44 mM sodium bicarbonate was employed at a flow rate of 0.75 mL/min. A linear calibration range of 0.5 to 30 mg/L PO43− applicable to environmental and wastewater analysis was achieved. For retention time and peak area repeatability, relative standard deviation values were 0.68 and 4.09%, respectively. Environmental and wastewater samples were analyzed with the optimized ion chromatography platform and the results were compared to values obtained by an accredited ion chromatograph. For the analysis of environmental samples, relative errors of <14 % were achieved. Recovery analysis was also carried out on both freshwater and wastewater samples and recovery results were within the acceptable range for water analysis using standard ion chromatography methods.  相似文献   
193.
Purpose of studyOtostegia limbata (Benth.) Boiss. (Family: Lamiacae) is an important underexplored ethnomedicinal plant that has been used as antinflammatory, anticancer and antibacterial herbal remedy previously. The present work was aimed to evaluate the antioxidant, antimicrobial, antileishmanial, and anticancer prospective of O. limbata stem and leaf extracts.ResultsThe highest amount of phenolic and flavonoid content was obtained in the methanol-acetone and methanol stem extracts i.e., 53.29 ± 1.33 and 28.64 ± 1.16, respectively with highest DPPH scavenging in MeH stem extract (IC50 = 34.5 ± 1.34 μg/ml). Significant amount of catechin, gallic acid, apigenin and rutin was quantified. A moderate antibacterial and substantial antifungal activity was observed. Cytotoxicity against brine shrimps categorized 21% of stem (3 out of 14 extracts) and 57% (8 out of 14 extracts) of leaf extracts as potent. Substantial cytotoxicity against THP-1 cell line (IC50 = 3.46 ± 0.25 μg/ml) and Leishmania (IC50 = 1.50 ± 0.23 μg/ml) was exhibited by methanol-distilled water leaf extract while noteworthy antiproliferative activity against Hep-G2 (IC50 = 0.44 ± 0.45 μg/ml) was manifested by n-hexane stem extract. Absence of hemolysis in normal RBCs signified plant’s selective cytotoxicity. Methanol-distilled water and chloroform stem extracts displayed prominent protein kinase inhibition and antidiabetic potential of plant.ConclusionThe results of present study recommend O. limbata as a potential source of antifungal, antileishmanial, anticancer, and α-amylase inhibitory agents.  相似文献   
194.
This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (η = 15%), and quantum efficiency (QE~85%) were achieved at a carrier lifetime of 1 × 103 μs and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 μm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.  相似文献   
195.
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N’-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.  相似文献   
196.
The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score −912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.  相似文献   
197.
198.
Tumors are currently more and more common all over the world; hence, attempts are being made to explain the biochemical processes underlying their development. The search for new therapeutic pathways, with particular emphasis on enzymatic activity and its modulation regulating the level of glucocorticosteroids, may contribute to the development and implementation of new therapeutic options in the treatment process. Our research focuses on understanding the role of 11β-HSD1 and 11β-HSD2 as factors involved in the differentiation and proliferation of neoplastic cells. In this work, we obtained the 9 novel N-tert-butyl substituted 2-aminothiazol-4(5H)-one (pseudothiohydantoin) derivatives, differing in the substituents at C-5 of the thiazole ring. The inhibitory activity and selectivity of the obtained derivatives in relation to two isoforms of 11β-HSD were evaluated. The highest inhibitory activity for 11β-HSD1 showed compound 3h, containing the cyclohexane substituent at the 5-position of the thiazole ring in the spiro system (82.5% at a conc. 10 µM). On the other hand, the derivative 3f with the phenyl substituent at C-5 showed the highest inhibition of 11β-HSD2 (53.57% at a conc. of 10 µM). A low selectivity in the inhibition of 11β-HSD2 was observed but, unlike 18β-glycyrrhetinic acid, these compounds were found to inhibit the activity of 11β-HSD2 to a greater extent than 11β-HSD1, which makes them attractive for further research on their anti-cancer activity.  相似文献   
199.
Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young’s modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.  相似文献   
200.
For soft robotics and programmable metamaterials, novel approaches are required enabling the design of highly integrated thermoresponsive actuating systems. In the concept presented here, the necessary functional component was obtained by polymer syntheses. First, poly(1,10-decylene adipate) diol (PDA) with a number average molecular weight Mn of 3290 g·mol−1 was synthesized from 1,10-decanediol and adipic acid. Afterward, the PDA was brought to reaction with 4,4′-diphenylmethane diisocyanate and 1,4-butanediol. The resulting polyester urethane (PEU) was processed to the filament, and samples were additively manufactured by fused-filament fabrication. After thermomechanical treatment, the PEU reliably actuated under stress-free conditions by expanding on cooling and shrinking on heating with a maximum thermoreversible strain of 16.1%. Actuation stabilized at 12.2%, as verified in a measurement comprising 100 heating-cooling cycles. By adding an actuator element to a gripper system, a hen’s egg could be picked up, safely transported and deposited. Finally, one actuator element each was built into two types of unit cells for programmable materials, thus enabling the design of temperature-dependent behavior. The approaches are expected to open up new opportunities, e.g., in the fields of soft robotics and shape morphing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号