首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12564篇
  免费   1453篇
  国内免费   540篇
化学   13791篇
晶体学   47篇
力学   130篇
综合类   14篇
数学   19篇
物理学   556篇
  2024年   25篇
  2023年   73篇
  2022年   147篇
  2021年   219篇
  2020年   426篇
  2019年   368篇
  2018年   325篇
  2017年   504篇
  2016年   724篇
  2015年   609篇
  2014年   632篇
  2013年   1080篇
  2012年   828篇
  2011年   781篇
  2010年   728篇
  2009年   804篇
  2008年   807篇
  2007年   802篇
  2006年   702篇
  2005年   633篇
  2004年   678篇
  2003年   510篇
  2002年   372篇
  2001年   229篇
  2000年   157篇
  1999年   182篇
  1998年   147篇
  1997年   170篇
  1996年   139篇
  1995年   126篇
  1994年   140篇
  1993年   137篇
  1992年   132篇
  1991年   52篇
  1990年   27篇
  1989年   26篇
  1988年   22篇
  1987年   15篇
  1986年   17篇
  1985年   12篇
  1984年   12篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
81.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   
82.
The rheological behavior of a mixture of two liquid-crystal polymers, hydroxypropyl cellulose and ethyl cellulose, in acetone solution is studied. The total polymer concentration in the solvent is held constant (40%) as the ratio of the two polymers is varied. The mixtures are anisotropic, isotropic, or biphasic (isotropic/anisotropic), depending on the concentration. Curves of viscosity vs shear rate for all the mixtures studied show three regions of viscosity, as described by Onogi and Asada for liquid-crystal polymers. The viscosity as a function of the weight ratio of the two polymers at constant shear rate exhibits deviations from additivity of viscosities of the two components at all concentrations. In mixtures of two polymers in the melt, deviations are also observed; the negative ones are attributed to phase separation and the positive ones to homogenous mixing (comparison with the phase diagram). All the mixtures studied (anisotropic, isotropic, or biphasic), show ranges of shear rates where the first normal-stress difference is negative, as is generally observed for anisotropic liquid-crystal polymers. It is concluded that the isotropic solutions become anisotropic under shear, as they are not far from the critical concentration. © 1994 John Wiley & Sons, Inc.  相似文献   
83.
Thermotropic copolyester fibers of oxynaphthoate and oxybenzoate have been subjected to conditions that promote solid-state polymerization as well as annealing. The annealing process causes the crystals to perfect with a simultaneous increase in heat of fusion and melting temperature. Solid-state polymerization, a reaction rate-controlled process, causes the polymer viscosity average molecular weight to increase by chain extension from about 14,000 g/mole to more than 87,000 g/mole with a simultaneous impressive increase in tenacity from about 10 g/d (1.2 GPa) to almost 30 g/d (3.7 GPa). To understand the changes in mechanical properties, we have modeled the fiber structure as short rod-like molecules poorly bonded to a continuous matrix of parallel molecules. Lengthening of the reinforcing molecules facilitates better transfer of load from matrix to molecules, resulting in higher tenacity fibers. © 1994 John Wiley & Sons, Inc.  相似文献   
84.
The nature of the propagation center in the cationic polymerization of N-benzoyl-8-octanelactam initiated by octanoylium hexachlcroantimonate, SbCl5, and Ph3CAsF6 in perdeuterated tetrachloroethane or its mixture with o-dichlorobenzene was studied using 1H, 13C, 19F, 31P, 75As, and 121Sb nuclear magnetic resonance (NMR) of model oligomers and the products of their end-capping with triphenylphosphine. In all cases, the nature of the propagation center has been found to be of an acylium ion pair with an SbCl6? or AsF6? counterion coordinated with the nearest benzoylamide group and cosolvated by the solvent. © 1994 John Wiley & Sons, Inc.  相似文献   
85.
Two phosphorus‐containing acrylate monomers were synthesized from the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with triethyl phosphite. The selective hydrolysis of the ethyl ester monomer with trimethylsilyl bromide (TMSBr) gave a phosphonic acid monomer. The attempted bulk polymerizations of the monomers at 57–60 °C with 2,2′‐azobisisobutyronitrile (AIBN) were unsuccessful; however, the monomers were copolymerized with methyl methacrylate (MMA) in bulk at 60 °C with AIBN. The resulting copolymers produced chars on burning, showing potential as flame‐retardant materials. Additionally, α‐(chloromethyl)acryloyl chloride (CMAC) was reacted with diethyl (hydroxymethyl)phosphonate to obtain a new monomer with identical ester and ether moieties. This monomer was hydrolyzed with TMSBr, homopolymerized, and copolymerized with MMA. The thermal stabilities of the copolymers increased with increasing amounts of the phosphonate monomer in the copolymers. A new route to highly reactive phosphorus‐containing acrylate monomers was developed. A new derivative of CMAC with mixed ester and ether groups was synthesized by substitution, first with diethyl (hydroxymethyl)phosphonate and then with sodium acetate. This monomer showed the highest reactivity and gave a crosslinked polymer. The incorporation of an ester group increased the rate of polymerization. The relative reactivities of the synthesized monomers in photopolymerizations were determined and compared with those of the other phosphorous‐containing acrylate monomers. Changing the monomer structure allowed control of the polymerization reactivity so that new phosphorus‐containing polymers with desirable properties could be obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2207–2217, 2003  相似文献   
86.
The morphology of blends of styrenic polymers in a matrix of 75% Nylon-6 prepared in a Brabender Plasti-Corder was examined by scanning electron microscopy. Styrene/acrylonitrile copolymers (SAN) form smaller particles as the AN level increases owing to the corresponding decrease in the SAN–polyamide interfacial tension. Various styrenic polymers containing functional groups, maleic anhydride or oxazoline type, that can react with Nylon-6 during melt processing were added to the SAN phase which also led to a decrease in the particle size owing to the graft copolymer formed in situ. The effects of functional group type, amount of functional groups per chain, amount of functional polymer added, and the miscibility of the styrene/maleic anhydride (SMA) and SAN copolymers on the morphology of the styrenic phase in the Nylon-6 matrix are described. © 1992 John Wiley & Sons, Inc.  相似文献   
87.
A new cyanate ester monomer, 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane has been synthesized and characterized. Epoxy modified with 4, 8 and 12% (by weight) of cyanate ester were made using epoxy resin and 1,1-bis(3-methyl-4-cyanatophenyl)cyclohexane and cured by using diaminodiphenylmethane. The cyanate ester modified epoxy matrix systems were further modified with 4, 8 and 12% (by weight) of bismaleimide (N,N′-bismaleimido-4,4′-diphenylmethane). The formation of oxazolidinone and isocyanurate during cure reaction of epoxy and cyanate ester blend was confirmed by IR spectral studies. Bismaleimide-cyanate ester-epoxy matrices were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. Thermal studies indicate that the introduction of cyanate ester into epoxy resin improves the thermal degradation studies at the expense of glass transition temperature. Whereas the incorporation of bismaleimide into epoxy resin enhances the thermal properties according to its percentage content. However, the introduction of both cyanate ester and bismaleimide influences the thermal properties according to their percentage content. DSC thermogram of cyanate ester modified epoxy and bismaleimide modified epoxy show unimodel reaction exotherms. The thermal degradation temperature and heat distortion temperature of the cured bismaleimide modified epoxy and cyanate ester-epoxy systems increased with increasing bismaleimide content. The morphology of the bismaleimide modified epoxy and cyanate ester-epoxy systems were also studied by scanning electron microscopy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
88.
The reactions of polystyryllithium and potassium on dimethoxymethyl 1,1‐diphenylethylene derivatives were studied in different solvents. In a polar medium, A3 and A6 star types were formed according to the stoichiometry, whereas in a nonpolar medium, hyperbranched structures were synthesized. Extensions of an already proposed mechanism in polar and nonpolar media were examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3329–3335, 2003  相似文献   
89.
1,2,3‐Triazole‐based polymers generated from the Cu(I)‐catalyzed cycloaddition between multivalent azides and acetylenes are effective adhesive materials for metal surfaces. The adhesive capacities of candidate mixtures of azide and alkyne components were measured by a modified peel test, using a customized adhesive tester. A particularly effective tetravalent alkyne and trivalent azide combination was identified, giving exceptional strength that matches or exceeds the best commercial formulations. The addition of Cu catalyst was found to be important for the synthesis of stronger adhesive polymers when cured at room temperature. Heating also accelerated curing rates, but the maximum adhesive strengths achieved at both room temperature and high temperature were the same, suggesting that crosslinking reaches the same advanced point in all cases. Polytriazoles also form adhesives to aluminum, but copper is bound more effectively, presumably because active Cu(I) ions may be leached from the surface to promote crosslinking and adhesion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5182–5189, 2007  相似文献   
90.
The ring‐opening copolymerization of a glycidyl ester derivative having a benzophenone group and the donor–acceptor norbornadiene (D‐A NBD) dicarboxylic acid, 5‐(4‐methoxyphenyl)‐1,4,6,7,7‐pentamethyl‐2,5‐norbornadiene‐2,3‐dicarboxylic acid, monoglycidyl ester derivatives with D‐A NBD dicarboxylic anhydride using tetraphenylphosphonium bromide as a catalyst proceeded smoothly to give novel self‐photosensitizing NBD polymers in good yields. The molecular weight of these polyesters was about 4,000, and lower than that of analogous NBD polymers having no benzophenone group. All the synthesized NBD polymers isomerized smoothly to the corresponding quadricyclane (QC) polymers upon UV irradiation in tetrahydrofuran (THF) solution and in the film state. The rate of the photoisomerization of the D‐A NBD moieties in these polymers was higher than that of the D‐A NBD moieties in the polymer having no photosensitizing group. Furthermore, the rate of the photoisomerization of the D‐A NBD moieties in these polymers was also higher than that of the NBD polymer with low molecular weight photosensitizer in dilute solution. The photo‐irradiated polymers having QC moieties released thermal energies of 146–180 J/g. The D‐A NBD moieties contained in these NBD polymers possessed fair to good fatigue resistance. The degradation of the NBD moieties in these polymers was 15–30% after 50 repeated cycles of interconversion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2978–2988, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号