首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2625篇
  免费   230篇
  国内免费   204篇
化学   2913篇
晶体学   9篇
力学   23篇
综合类   9篇
物理学   105篇
  2024年   2篇
  2023年   14篇
  2022年   21篇
  2021年   54篇
  2020年   58篇
  2019年   62篇
  2018年   62篇
  2017年   91篇
  2016年   106篇
  2015年   100篇
  2014年   107篇
  2013年   245篇
  2012年   147篇
  2011年   133篇
  2010年   135篇
  2009年   148篇
  2008年   173篇
  2007年   162篇
  2006年   144篇
  2005年   115篇
  2004年   147篇
  2003年   105篇
  2002年   77篇
  2001年   69篇
  2000年   75篇
  1999年   72篇
  1998年   51篇
  1997年   74篇
  1996年   43篇
  1995年   45篇
  1994年   59篇
  1993年   46篇
  1992年   33篇
  1991年   15篇
  1990年   8篇
  1989年   6篇
  1988年   9篇
  1987年   13篇
  1986年   8篇
  1985年   8篇
  1984年   5篇
  1983年   1篇
  1982年   6篇
  1981年   2篇
  1979年   1篇
  1972年   2篇
排序方式: 共有3059条查询结果,搜索用时 15 毫秒
991.
The reaction of N‐methylimidazole (N‐MeIm) and N‐butylimidazole (N‐BuIm) with the complexes [PdCl2(PPh2py–P,N)] and [PdCl2(PPh2Etpy–P,N)] in the presence of NH4PF6 under N2 at room temperature afforded four new cationic Pd(II) complexes [PdCl(PPh2py–P,N)(N‐MeIm)](PF6) ( 1 ), [PdCl(PPh2py–P,N)(N‐BuIm)](PF6) ( 2 ), [PdCl(PPh2Etpy–P,N)(N‐MeIm)](PF6) ( 4 ) and [PdCl(PPh2Etpy‐P,N)(N‐BuIm)](PF6) ( 5 ) in good yields, where PPh2py is 2‐(diphenylphosphino)pyridine and PPh2Etpy is 2‐{2‐(diphenylphosphino)ethyl}pyridine). The complexes were fully characterized. The catalytic activities of these complexes were investigated for Suzuki–Miyaura cross‐coupling reactions at room temperature. Complex 2 exhibited excellent activity compared to other analogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
992.
Cationic coordinatively saturated complexes of ruthenium(II), [Ru(o‐C6H4‐2‐py)(phen)(MeCN)2]+, bearing different counterions of PF6? and Cl? have been used in the radical polymerization of 2‐hydroxyethyl methacrylate in protic media and acetone under homogeneous conditions. Exchange of PF6? by Cl? increases the solubility of the complex in water. Both complexes led to the fast polymerization under mild conditions, but control was achieved only in methanol and acetone and was better for the complex with Cl?. The polymerization accelerated in aqueous media and proceeded to a high conversion even with a monomer/catalyst = 2000/1, but without control. Polymerization mediated by complex bearing Cl? was slower in protic solvents but faster in acetone and always resulted in lower molecular weight polymers. Thus, the nature of the anion strongly affected the catalytic activity of the complexes and may serve as way of fine‐tuning the catalytic properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
993.
This article describes the photosensitive polymer micelles whose structural stability and acid sensitivity can be widely tuned simply via one‐batch UV irradiation. To this end, the well‐defined poly(5‐ethyl‐5‐methacryloyloxy‐methyl‐2‐styryl‐[1,3]dioxane)‐block‐poly[poly(ethylene glycol) methacrylate] (PEMSD‐b‐PPEGMA) copolymers were synthesized via RAFT polymerization under mild visible light radiation at 30 °C. The results demonstrated that the irradiation of the homogeneous acetone solution with UV light only induced Z‐isomerization of their cinnamyl groups, while irradiating PEMSD chains in the bulky micellar cores only induced dimerization. Moreover, the micelles of previously Z‐isomerized copolymer could be effectively stabilized without changing their acid sensitivity on irradiating for shortly 3 min, while UV irradiation for 30 min could remarkably improve the acid stability of these micelles. These novel properties are of potential applications in controlled drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
994.
Simultaneous free radical and cationic photopolymerizations of mixtures of multifunctional acrylate and oxetane monomers were carried out to provide hybrid interpenetrating network polymers. The use of “kick‐started” oxetanes in which oxetane monomers are accelerated by the use of small amounts of certain highly substituted epoxides provides dual independent radical and cationic systems with similar rates of photopolymerization leading to homogeneous interpenetrating networks. The combined photopolymerizations are very rapid and afford crosslinked network films that are colorless, hard, and transparent. The networks display no indications of phase separation. The use of this technology in various applications such as coatings, 3D imaging, and for composites is discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 594–601  相似文献   
995.
Tough polymer hydrogels have great potential applications in soft actuators, artificial muscles, tissue engineering, and so forth. To improve the strength and toughness of hydrogels, numerous strategies have been developed to integrate efficient energy dissipation mechanisms into the hydrophilic networks. Among them, the use of macro-crosslinkers to replace conventional chemical ones has become promising to develop tough hydrogels. Polymer colloids—including nano-/microparticles, nano-/microgels, hydrophobic associates, and block copolymer assemblies—have been employed in literature as multi-functional macro-crosslinkers that link polymer chains through covalent bonds or noncovalent interactions. The dislocation, deformation, desociation, and rupture of polymer colloids upon loadings are the major mechanisms to dissipate energy. This article provides a comprehensive account of most recent progresses on tough hydrogels crosslinked by polymer colloids, and explores the toughening mechanisms. It aims to inspire novel designs of tough hydrogels with multi-functionalities. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1336–1350  相似文献   
996.
Mechanism of the morphological changes between toroidal and rod‐like nanostructures of P4VP‐b‐PS‐b‐P4VP amphiphilic triblock copolymer micelles has been investigated in aqueous solution. This transition is proved to be highly reversible and tunable upon changing temperature. The toroidal structure, evolving from fibers at 20 °C, can transform to rod‐like morphology as the temperature either gradually or directly increases to 80 °C, and vice versa. However, the transition mechanisms are quite different in different temperature‐changing processes. The structure and thickness of the micelles are dependent on the specific temperature, whereas the transition mechanism is related to the method of the temperature change. These morphological changes are considered as a result from the interaction parameter between the solvent and the copolymer blocks, especially the hydrophobic block. Our research complements the external control over the reversible morphological transition of block copolymer micelles without changing the composition of the system or introducing additional influencing factors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1450–1457  相似文献   
997.
The preparation of long‐term‐stable giant unilamellar vesicles (GUVs, diameter ≥1000 nm) and large vesicles (diameter ≥500 nm) by self‐assembly in THF of the crystalline‐b‐coil polyphosphazene block copolymers [N=P(OCH2CF3)2]nb‐[N=PMePh]m ( 4 a : n=30, m=20; 4 b : n=90, m=20; 4 c : n=200, m=85), which combine crystalline [N=P(OCH2CF3)2] and amorphous [N=PMePh] blocks, both of which are flexible, is reported. SEM, TEM, and wide‐angle X‐ray scattering experiments demonstrated that the stability of these GUVs is induced by crystallization of the [N=P(OCH2CF3)2] blocks at the capsule wall of the GUVS, with the [N=PMePh] blocks at the corona. Higher degrees of crystallinity of the capsule wall are found in the bigger vesicles, which suggests that the crystallinity of the [N=P(OCH2CF3)2] block facilitates the formation of large vesicles. The GUVs are responsive to strong acids (HOTf) and, after selective protonation of the [N=PMePh] block, they undergo a morphological evolution to smaller spherical micelles in which the core and corona roles have been inverted. This morphological evolution is totally reversible by neutralization with a base (NEt3), which regenerates the original GUVs. The monitoring of this process by dynamic light scattering allowed a mechanism to to be proposed for this reversible morphological evolution in which the block copolymer 4 a and its protonated form 4 a+ are intermediates. This opens a route to the design of reversibly responsive polymeric systems in organic solvents. This is the first reversibly responsive vesicle system to operate in organic media.  相似文献   
998.
A metharylate monomer having an octanal‐derived bicyclo bisoxazolidine (BBOX) moiety was synthesized and was radically copolymerized with a methacrylate having a hydrophilic poly(ethylene glycol) chain to obtain an amphiphilic copolymer having the BBOX moieties as hydrophobic side chains. The BBOX moieties were stable for 7 days at pH 7.0, whereas they were gradually hydrolyze at pH 5.0 to release octanal continuously for 7 days, confirming the potential applicability of the copolymer to a polymeric pro‐fragrance that can release aldehyde‐type fragrance molecules slowly for a long period. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
999.
Poly(ethylene‐alt‐propylene)‐b‐poly(ethylene oxide) (PEP‐PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2‐bis[4‐(2‐hydroxy‐3‐methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP‐PEO. The diblock copolymers self‐assembled into well‐dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer‐modified epoxies, and an explanation is proposed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
1000.
Triblock copolymers (MPEG‐b‐PCEMA‐b‐PHQHEMA) bearing cinnamoyl and 8‐hydroxyquinoline side groups with different block length are synthesized by a two‐step reversible addition fragmentation chain transfer polymerization of cinnamoyl ethyl methacrylate (CEMA) and 2‐((8‐hydroxyquinolin‐5‐yl)methoxy)ethyl methacrylate (HQHEMA), respectively. The self‐assembly of MPEG‐b‐PCEMA‐b‐PHQHEMA in mixture of THF and ethanol is investigated by varying the ratio of THF and ethanol. Spheric micelles with diameter of 63.7 nm and polydispersity of 0.128 are obtained for MPEG113b‐PCEMA15b‐PHQHEMA17 in THF/ethanol with a volume ratio (v/v) of 5/5. The PCEMA inner shell of the resulted micelles is photo‐crosslinked under UV radiation to give stabilized micelles. The complex reaction of the stabilized micelles with Zn(II) is investigated under different conditions to give zinc(II)‐bis(8‐hydroxyquinoline)(Znq2)‐containing micelles. When the complex reaction is carried out in THF/ethanol (v/v = 5/5) or THF/toluene (v/v = 6/4) with zinc acetate, fluorescent Znq2‐containing micelles are obtained without obvious change in diameters and morphologies. The fluorescent micelles exhibit green emission with λmax at 520 nm. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1056–1064  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号