首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   13篇
  国内免费   7篇
化学   96篇
晶体学   3篇
力学   1篇
物理学   16篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   23篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有116条查询结果,搜索用时 0 毫秒
51.
H. G?ktepe  H. ?ahan  ?. Patat  A. ülgen 《Ionics》2009,15(2):233-239
To improve the cycle performance of spinel LiMn2O4 as the cathode of 4-V-class lithium secondary batteries, spinel phases LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) were successfully prepared using the sol–gel method. The spinel materials were characterized by powder X-ray diffraction (XRD), elemental analysis, and scanning electron microscopy. All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. Electrochemical studies were carried out using the Li|LiM x Mn2 − x O4 (M=Li, Fe, Co; x = 0, 0.05, 0.1, 0.15) and LiFe0.05M y Mn1.95 − y O4 (M=Li, Al, Ni, Co; y = 0.05, 0.1) cells. These cathodes were more tolerant to repeated lithium extraction and insertion than a standard LiMn2O4 spinel electrode in spite of a small reduction in the initial capacity. The improvement in cycling performance is attributed to the stabilization in the spinel structure by the doped metal cations.  相似文献   
52.
Layered O3‐type sodium oxides (NaMO2, M=transition metal) commonly exhibit an O3–P3 phase transition, which occurs at a low redox voltage of about 3 V (vs. Na+/Na) during sodium extraction and insertion, with the result that almost 50 % of their total capacity lies at this low voltage region, and they possess insufficient energy density as cathode materials for sodium‐ion batteries (NIBs). Therefore, development of high‐voltage O3‐type cathodes remains challenging because it is difficult to raise the phase‐transition voltage by reasonable structure modulation. A new example of O3‐type sodium insertion materials is presented for use in NIBs. The designed O3‐type Na0.7Ni0.35Sn0.65O2 material displays a highest redox potential of 3.7 V (vs. Na+/Na) among the reported O3‐type materials based on the Ni2+/Ni3+ couple, by virtue of its increased Ni?O bond ionicity through reduced orbital overlap between transition metals and oxygen within the MO2 slabs. This study provides an orbital‐level understanding of the operating potentials of the nominal redox couples for O3‐NaMO2 cathodes. The strategy described could be used to tailor electrodes for improved performance.  相似文献   
53.
Spinel cathode materials consisting of LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres have been synthesized by a facile solution‐phase coating and subsequent solid‐phase lithiation route in an atmosphere of air. When used as the cathode of lithium‐ion batteries, the double‐shell LiMn2O4@LiNi0.5Mn1.5O4 hollow microspheres thus obtained show a high specific capacity of 120 mA h g?1 at 1 C rate, and excellent rate capability (90 mAhg?1 at 10 C) over the range of 3.5–5 V versus Li/Li+ with a retention of 95 % over 500 cycles.  相似文献   
54.
The increasing use of lithium‐ion batteries (LIBs) in high‐power applications requires improvement of their high‐temperature electrochemical performance, including their cyclability and rate capability. Spinel lithium manganese oxide (LiMn2O4) is a promising cathode material because of its high stability and abundance. However, it exhibits poor cycling performance at high temperatures owing to Mn dissolution. Herein we show that when stoichiometric lithium manganese oxide is coated with highly doped spinels, the resulting epitaxial coating has a hierarchical atomic structure consisting of cubic‐spinel, tetragonal‐spinel, and layered structures, and no interfacial phase is formed. In a practical application of the coating to doped spinel, the material retained 90 % of its capacity after 800 cycles at 60 °C. Thus, the formation of an epitaxial coating with a hierarchical atomic structure could enhance the electrochemical performance of LIB cathode materials while preventing large losses in capacity.  相似文献   
55.
锂离子动力电池,作为动力源,要求其具有较高的比容量、倍率性能、热稳定性及优异的循环性能。静电纺丝技术是一种新型纳米纤维制备技术,因其制备的纳米纤维膜具有比表面积大和孔隙率高等特点,近年来在锂离子电池领域得到了广泛应用,有望成为大幅改善锂离子动力电池性能的关键技术。基于锂离子动力电池的特性,当前静电纺丝技术主要用于制备高孔隙率的纳米纤维膜、高分子共混膜及无机-高分子复合膜等隔膜材料以提高隔膜的机械性能和热稳定性;此外,静电纺丝技术还被用于改善磷酸铁锂等聚阴离子型正极材料及石墨负极材料的电化学性能。本文还针对上述研究中存在的问题,提出了未来静电纺丝技术在锂离子动力电池中应用的可改进的研究方案。  相似文献   
56.
Spinel LiNi0.5Mn1.5O4 (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb2O7 counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.  相似文献   
57.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   
58.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li2MnO3·0.4LiNi0.5Mn0.5O2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g-1,具有完善的α-NaFeO2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 mAh·g-1;在0.5C下循环100次后,放电比容量仍为217 mAh·g-1(容量保持率为94%)。  相似文献   
59.
李丽娟  朱振东  代娟  王蓉蓉  彭文 《电化学》2021,27(4):405-412
本文主要对高镍三元材料(Li(Ni0.85Co0.1Mn0.05)O2,Ni85)和常规低镍三元材料(Li(Ni0.6Co0.2Mn0.2)O2,Ni60)两种三元材料的相变电压范围进行了划分和测定,以研究两种材料相变规律的区别,并进一步分析得出高镍材料在充电过程中的结构稳定性相对较弱的原因。本文主要采用了XRD、dQ·dV-1以及SEM的表征方式对两种材料的相变、结构变化及颗粒表面的形貌进行分析。并得出以下结论,高镍正极在3.0 V ~ 4.2 V范围内充电时经历了H1→M→H2→H3的三次相变过程,最终产物为H3相。而传统Ni60材料在相同电压范围内只经历了H1→M的相变过程,当过充至4.550 V时,Ni60材料可达到H2相,继续过充至5.000 V后,可完成H3相的转变。因此,高镍正极材料在正常充电电压范围内即完成了H3相的相转变过程,其较低的相变电压阈值是其结构稳定性较差的原因。  相似文献   
60.
It is shown that, for the electrodes of fuel cells with solid polymer electrolyte, the dependence of overall current on the active layer thickness contains an extremum. There is an optimum thickness of active layer, at which the overall current reaches its maximum possible value. The nature of this dependence is explained. The character of the distribution of electrochemical process intensity over the depth of active layer of cathode with solid polymer electrolyte is analyzed. The optimum thicknesses of active layers of oxygen and air cathodes of fuel cells with Nafion and platinum and the corresponding overall currents and contents of catalyst in the active layer are calculated. In the calculations, the temperature of fuel cell, the pressure in the cathode gas chamber, and the cathodic potential were varied. The optimization of active layer thickness of cathode with solid polymer electrolyte can reduce the platinum consumption, i.e. its amount per 1 kW of power produced in a membrane-electrode assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号