首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   13篇
  国内免费   7篇
化学   96篇
晶体学   3篇
力学   1篇
物理学   16篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   23篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
21.
Sodium‐ion batteries (NIBs) are the most promising alternatives to lithium‐ion batteries in the development of renewable energy sources. The advancement of NIBs depends on the exploration of new electrode materials and fundamental understanding of working mechanisms. Herein, via experimental and simulation methods, we develop a mixed polyanionic compound, Na2Fe(C2O4)SO4?H2O, as a cathode for NIBs. Thanks to its rigid three dimensional framework and the combined inductive effects from oxalate and sulfate, it delivered reversible Na insertion/desertion at average discharging voltages of 3.5 and 3.1 V for 500 cycles with Coulombic efficiencies of ca. 99 %. In situ synchrotron X‐ray measurements and DFT calculations demonstrate the Fe2+/Fe3+ redox reactions contribute to electron compensation during Na+ desertion/insertion. The study suggests mixed polyanionic frameworks may provide promising materials for Na ion storage with the merits of low cost and environmental friendliness.  相似文献   
22.
Neutron diffraction is a powerful tool for the characterization of materials and, particularly, oxides. Oxide materials find applications in solid oxide fuel cells (SOFCs) as solid electrolytes as well as anode and cathode materials. As a structural probe, neutrons are specially suitable for the crystallographic study of oxides, given the comparable scattering factors of O and other heavier elements, allowing its precise localization in the crystal structure. Many problems can be addressed by neutrons, related to the octahedral tilting in perovskites, phase transitions, order–disorder phenomena, presence of anionic vacancies, etc. Neutrons make possible an accurate determination of the thermal factors and provide a visualization of the diffusion paths in ionic conductors. Neutrons allow the localization of light atoms such as hydrogen, and make possible the distinction between neighbouring elements, typically Fe and Mn. In this work we will describe some recent applications of this technique in the field of solid electrolytes and electrode materials, including some examples from our group.  相似文献   
23.
The substitution of a small amount of Ga in the high-voltage spinel cathode LiMn1.5Ni0.42Ga0.08O4 leads to superior cyclability at room temperature and 55 °C along with higher rate capability with conventional electrolytes compared to that found with the LiMn1.5Ni0.5O4 cathode. The superior performance is attributed to the segregation of the inert Ga3+ ions to the surface during the synthesis process, providing a robust, more stable interface with the electrolyte at the high operating voltage (~ 4.7 V), along with the stabilization of the spinel structure with a disordering of the cations in the octahedral sites.  相似文献   
24.
Samples of lanthanum-strontium cuprate LaSrCuO3.61 are synthesized by a solid-phase method at 1473 K, in air. Electron diffraction patterns reveal low-intensity satellites whose position is described in the reciprocal space by the (3 + 2)-dimensional space group I4/mmm(αα0, α-α0)00mg. Using a five-layer cell LaSrCuO4-δ|YSZ|LaSrCuO4-δ|YSZ|LaCuO4-δ prepared by isostatic hot pressing, the ionic component of conductivity of LaSrCuO4-δ is determined (σ1179 K = 3.8 × 10?3 S cm?1), which is commensurate with other mixed conductors based on complex oxides of cobalt and iron.  相似文献   
25.
Ni-rich layered cathodes have become the promising candidates for the next-generation high-energy Li-ion batteries due to their high energy density and competitive cost. However, they suffer from rapid capacity fading due to the structural and interfacial instability upon long-term operation. Herein, the Ti-doped and LiYO2-coated Ni-rich layered cathode has been synthesized via a facile one-step sintering strategy, which significantly restrains the interfacial parasitic side reactions and enhances the structural stability. Specifically, the trace Ti4+ doping greatly stabilizes the lattice oxygen and alleviates the Li/Ni disorder while the LiYO2 coating layer can prevent the erosion of the cathode by the electrolyte during cycles. As a result, the Ti-NCM83@LYO delivers a high specific capacity of 135 mAh g−1 even at 10C and there is almost no capacity loss at 1C for 100 cycles. This work provides a simple one-step dual-modification strategy to meet the commercial requirements of Ni-rich cathodes.  相似文献   
26.
Nano-engineered electrodes, such as porous LiCoO2, exhibit improved electrochemical performance compared to the non-porous LiCoO2 analogue. Structural studies of the pore walls composing the nanostructured LiCoO2 materials have focused on long-range (diffraction) methods. However, the powder diffraction patterns of the low-temperature (LT) and high-temperature (HT) phases of non-porous LiCoO2 are very similar and distinguishing the two phases can be challenging. In this work, infrared and Raman spectroscopy are used to unambiguously assign the LiCoO2 crystalline domains present in two porous compounds (nanowire LiCoO2 and mesoporous LiCoO2) as LT-LiCoO2. Moreover, the appearance of new bands in the infrared spectrum of LiCoO2 nanowires might signal the presence of disordered LiCoO2 domains that are XRD silent.  相似文献   
27.
A hollow carbon nanofiber hybrid nanostructure anchored with titanium dioxide (HCNF@TiO2) was prepared as a matrix for effective trapping of sulfur and polysulfides as a cathode material for Li–S batteries. The synthesized composites were characterized and examined by X‐ray diffraction, nitrogen adsorption–desorption measurements, field‐emission scanning electron microscopy, scanning transmission electron microscopy, and electrochemical methods such as galvanostatic charge/discharge, rate performance, and electrochemical impedance spectroscopy tests. The obtained HCNF@TiO2–S composite showed a clear core–shell structure with TiO2 nanoparticles coating the surface of the HCNF and sulfur homogeneously distributed in the coating layer. The HCNF@TiO2–S composite exhibited much better electrochemical performance than the HCNF–S composite, which delivered an initial discharge capacity of 1040 mA h g?1 and maintained 650 mAh g?1 after 200 cycles at a 0.5 C rate. The improvements of electrochemical performances might be attributed to the unique hybrid nanostructure of HCNF@TiO2 and good dispersion of sulfur in the HCNF@TiO2–S composite.  相似文献   
28.
A layered composite with P2 and O3 integration is proposed toward a sodium‐ion battery with high energy density and long cycle life. The integration of P2 and O3 structures in this layered oxide is clearly characterized by XRD refinement, SAED and HAADF and ABF‐STEM at atomic resolution. The biphase synergy in this layered P2+O3 composite is well established during the electrochemical reaction. This layered composite can deliver a high reversible capacity with the largest energy density of 640 mAh g?1, and it also presents good capacity retention over 150 times of sodium extraction and insertion.  相似文献   
29.
New composite cathode materials xLiMn2O4/(1 ? x) LiCoO2(x = 0.7, 0.6, 0.5 и 0.4) were obtained by mechanical activation. According to scanning electron microscopy data, the process was accompanied by pronounced dispersion and fine mixing of the initial components. In the course of the preparation and electrochemical cycling of the composites, LiMn2O4 and LiCoO2 partially reacted, leading to the replacement of manganese with cobalt in the structure of spinel, which was detected by powder X-ray diffraction (XRD), IR and X-ray photoelectron spectroscopy (XPS), and cyclic chronopotentiometry. The specific discharge capacity of composites was ~100 mAh/g.  相似文献   
30.
Sluggish kinetics and poor reversibility of cathode chemistry is the major challenge for magnesium batteries to achieve high volumetric capacity. Introduction of the cuprous ion (Cu+) as a charge carrier can decouple the magnesiation related energy storage from the cathode electrochemistry. Cu+ is generated from a fast equilibrium between copper selenide electrode and Mg electrolyte during standing time, rather than in the electrochemical process. A reversible chemical magnesiation/de‐magnesiation can be driven by this solid/liquid equilibrium. During a typical discharge process, Cu+ is reduced to Cu and drives the equilibrium to promote the magnesiation process. The reversible Cu to Cu+ redox promotes the recharge process. This novel Cu+ mediated cathode chemistry of Mg battery leads to a high reversible areal capacity of 12.5 mAh cm?2 with high mass loading (49.1 mg cm?2) of the electrode. 80 % capacity retention can be achieved for 200 cycles after a conditioning process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号