全文获取类型
收费全文 | 96篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
化学 | 96篇 |
晶体学 | 3篇 |
力学 | 1篇 |
物理学 | 16篇 |
出版年
2024年 | 1篇 |
2023年 | 2篇 |
2022年 | 7篇 |
2021年 | 10篇 |
2020年 | 23篇 |
2019年 | 3篇 |
2018年 | 5篇 |
2017年 | 4篇 |
2016年 | 4篇 |
2015年 | 4篇 |
2014年 | 2篇 |
2013年 | 6篇 |
2012年 | 6篇 |
2011年 | 7篇 |
2009年 | 8篇 |
2008年 | 5篇 |
2007年 | 2篇 |
2006年 | 5篇 |
2005年 | 2篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 2篇 |
2001年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1995年 | 1篇 |
1992年 | 1篇 |
排序方式: 共有116条查询结果,搜索用时 0 毫秒
111.
Dr. Zhiping Song Dr. Yumin Qian Dr. Mikhail L. Gordin Dr. Duihai Tang Dr. Terrence Xu Prof. Minoru Otani Prof. Hui Zhan Prof. Haoshen Zhou Prof. Donghai Wang 《Angewandte Chemie (International ed. in English)》2015,54(47):13947-13951
In spite of recent progress, there is still a lack of reliable organic electrodes for Li storage with high comprehensive performance, especially in terms of long‐term cycling stability. Herein, we report an ideal polymer electrode based on anthraquinone, namely, polyanthraquinone (PAQ), or specifically, poly(1,4‐anthraquinone) (P14AQ) and poly(1,5‐anthraquinone) (P15AQ). As a lithium‐storage cathode, P14AQ showed exceptional performance, including reversible capacity almost equal to the theoretical value (260 mA h g?1; >257 mA h g?1 for AQ), a very small voltage gap between the charge and discharge curves (2.18–2.14=0.04 V), stable cycling performance (99.4 % capacity retention after 1000 cycles), and fast‐discharge/charge ability (release of 69 % of the low‐rate capacity or 64 % of the energy in just 2 min). Exploration of the structure–performance relationship between P14AQ and related materials also provided us with deeper understanding for the design of organic electrodes. 相似文献
112.
A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for High‐Performance Lithium–Sulfur Batteries 下载免费PDF全文
Hongqiang Wang Wenchao Zhang Prof. Huakun Liu Prof. Zaiping Guo 《Angewandte Chemie (International ed. in English)》2016,55(12):3992-3996
Lithium–sulfur batteries are regarded as promising candidates for energy storage devices owing to their high theoretical energy density. The practical application is hindered, however, by low sulfur utilization and unsatisfactory capacity retention. Herein, we present a strategy for configuration of the sulfur cathode, which is composed of an integrated carbon/sulfur/carbon sandwich structure on polypropylene separator that is produced using the simple doctor‐blade technique. The integrated electrode exhibits excellent flexibility and high mechanical strength. The upper and bottom carbon layers of the sandwich‐structured electrode not only work as double current collectors, which effectively improve the conductivity of the electrode, but also serve as good barriers to suppress the diffusion of the polysulfide and buffer the volume expansion of the active materials, leading to suppression of the shuttle effect and low self‐discharge behavior. 相似文献
113.
114.
Zhuangzhuang Zhang Liping Duan An Li Jianzhi Xu Jian Shen Xiaosi Zhou 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(52):e202201562
Layered oxide cathodes have demonstrated great potential for potassium-ion batteries (PIBs) on account of high reversible capacity, appropriate diffusion paths, and low cost. However, their electrochemical performance in PIBs is generally worse than that in lithium-ion batteries due to large structural changes and deformations during charging and discharging. To improve their potassium storage performance, a series of strategies have been developed in recent studies. In this review, we summarize the latest advancements in layered oxide cathodes for PIBs through different crystal regulation strategies, including transition metal layer doping, potassium content optimization, oxygen partial substitution, functional morphology construction and air stability improvement. Meanwhile, the relationship between the electrochemical properties and structural evolution of these modified cathodes is also investigated. In addition, the challenges and prospects of these layered oxide cathodes in PIBs are analyzed in detail, providing constructive insights for future applications of PIBs. 相似文献
115.
采用碳酸盐共沉淀与燃烧法相结合的方法制备得到了多孔微纳球形结构的富锂正极材料0.6Li_2MnO_3·0.4LiNi_(0.5)Mn_(0.5)O_2。借助X射线衍射(XRD)分析、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附和恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能。结果表明该方法制备出的材料是由一次颗粒径约300 nm的小颗粒组成的多孔微纳球形结构,比表面积为13 m2·g~(-1),具有完善的α-NaFeO_2层状结构(空间群为R3m)。电化学性能测试结果证实该材料具有优异的高容量、高循环稳定性和高倍率性能。在2.0~4.8 V,电流密度为0.1C、0.2C、0.5C、1C、3C、5C和10C时的放电比容量分别为:266、254、235、205、186、149和107 m Ah·g~(-1);在0.5C下循环100次后,放电比容量仍为217 m Ah·g~(-1)(容量保持率为94%)。 相似文献
116.
M. R. Cesrio D. A. Macedo A. E. Martinelli R. M. Nascimento B. S. Barros D. M. A. Melo 《Crystal Research and Technology》2012,47(7):723-730
The development of novel and high‐performance cathodes is a critical issue to be addressed in order to reduce Solid Oxide Fuel Cells (SOFCs) operation temperature to the 600‐800 °C range or less. The performance of CeO2‐based composite cathodes is very attractive to such operational temperatures. In this work, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and Ce0.8Sm0.2O1.9 (SDC) powders were synthesized by different synthesis methods and mechanically mixed to prepare LSCF‐SDC composite cathodes. Screen‐printed LSCF‐SDC/CGO/LSCF‐SDC symmetrical cells were sintered at 1150 °C for 4 h and characterized by electrochemical impedance spectroscopy in static air. X‐ray diffraction and scanning electron microscopy were employed to characterize the powders. Area specific resistance values of 0.72 and 2.77 Ω cm2 at 800 °C were found for composite cathodes containing SDC powder synthesized by modified Pechini and microwave‐assisted combustion methods, respectively. Furthermore, the activation energy of the composite cathode containing SDC derived from modified Pechini method is 1.18 eV, i.e., much lower than 1.73 eV, value determined for LSCF with SDC from microwave‐combustion method. 相似文献