首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14181篇
  免费   982篇
  国内免费   2119篇
化学   16184篇
晶体学   20篇
力学   113篇
综合类   49篇
数学   47篇
物理学   869篇
  2024年   12篇
  2023年   46篇
  2022年   106篇
  2021年   203篇
  2020年   379篇
  2019年   345篇
  2018年   280篇
  2017年   486篇
  2016年   564篇
  2015年   494篇
  2014年   588篇
  2013年   1222篇
  2012年   753篇
  2011年   840篇
  2010年   794篇
  2009年   860篇
  2008年   996篇
  2007年   1083篇
  2006年   943篇
  2005年   869篇
  2004年   851篇
  2003年   666篇
  2002年   590篇
  2001年   466篇
  2000年   432篇
  1999年   366篇
  1998年   327篇
  1997年   294篇
  1996年   255篇
  1995年   210篇
  1994年   235篇
  1993年   222篇
  1992年   175篇
  1991年   79篇
  1990年   65篇
  1989年   49篇
  1988年   41篇
  1987年   22篇
  1986年   15篇
  1985年   15篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   5篇
  1980年   3篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
52.
We studied simulations by computer graphics to estimate the steric mechanism of the asymmetric polymerization of prochiral diene monomers in channels of inclusion compounds of steroidal bile acids, such as deoxycholic acid (DCA) and cholic acid. We applied a hierarchization method to interpret the crystal structures of bile acids, clarifying that the chiral host molecules associated to form characteristic 21-helical assemblies with uneven surfaces. A detailed analysis of the uneven channels in a close-packing state indicated that there were many possible arrangements of the monomers in the channels. The plausible arrangements in the channel could explain a previous study, which showed that the polymerization in the DCA channel yielded chiral polymers with a predominant configuration from prochiral diene monomers, such as 2-methyl-trans-1,3-pentadiene. On the basis of such simulation studies of the arrangements of guest monomers in the channel, we examined a plausible steric mechanism for asymmetric inclusion polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4648–4655, 2004  相似文献   
53.
Fine magnetite nanoparticles, both electrostatically stabilized and nonstabilized, were synthesized in situ by precipitation of Fe(II) and Fe(III) salts in alkaline medium. Magnetic poly(glycidyl methacrylate) (PGMA) microspheres with core‐shell structure, where Fe3O4 is the magnetic core and PGMA is the shell, were obtained by dispersion polymerization initiated with 2,2′‐azobisisobutyronitrile (AIBN), 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), or ammonium persulfate (APS) in ethanol containing poly(vinylpyrrolidone) or ethylcellulose stabilizer in the presence of iron oxide ferrofluid. The average microsphere size ranged from 100 nm to 2 μm. The effects of the nature of ferrofluid, polymerization temperature, monomer, initiator, and stabilizer concentration on the PGMA particle size and polydispersity were studied. The particles contained 2–24 wt % of iron. AIBN produced larger microspheres than APS or ACVA. Polymers encapsulating electrostatically stabilized iron oxide particles contained lower amounts of oxirane groups compared with those obtained with untreated ferrofluid. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5827–5837, 2004  相似文献   
54.
The whole controlled synthesis of novel amphiphilic polylactide (PLA)‐grafted dextran copolymers was achieved. The control of the architecture of such biodegradable and potentially biocompatible copolymers has required a three‐step synthesis based on the “grafting from” concept. The first step consisted of the partial silylation of the dextran hydroxyl groups. This protection step was followed by the ring‐opening polymerization of D ,L ‐lactide initiated from the remaining OH functions of the partially silylated polysaccharide. The third step involved the silylether group deprotection under very mild conditions. Based on previous studies, in which the control of the first step was achieved, this study is focused on the last two steps. Experimental conditions were investigated to ensure a controlled polymerization of D ,L ‐lactide, in terms of grafting efficiency, graft length, and transesterification limitation. After polymerization, the final step was studied in order to avoid degradation of both polysaccharide backbone and polyester grafts. The chemical stability of dextran backbone was checked throughout each step of the synthesis. PLA‐grafted dextrans and PLA‐grafted (silylated dextrans) were proved to adopt a core‐shell conformation in various solvents. Furthermore, preliminary experiments on the potential use of these amphiphilic grafted copolymers as liquid/liquid interface stabilizers were performed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2577–2588, 2004  相似文献   
55.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   
56.
This study critically examines the similarities and differences between poly(ethylene oxide) (PEO) stabilized latices of polynorbornene and polybutadiene. Features such as the kinetics of copolymerization of norbornene and cyclooctadiene with a macromonomer of PEO, the particles' size and morphology, the type of copolymer formed, and the stability of these latices were investigated and the results obtained are considered. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2705–2716, 2004  相似文献   
57.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
58.
The production of high‐solid‐content, low‐viscosity latexes is an active field in both industry and academia. The viscosity of polymer dispersions has a clear dependence on the particle size distribution (PSD). An example is the rule of thumb that a bimodal PSD enables the reduction of the viscosity with respect to monomodal systems. Despite important progress in theoretical work, not much has been done to quantitatively predict the low shear viscosity of aqueous polymer dispersions as a function of the complex PSD. In this work, the capability of a low‐shear‐viscosity equation to quantitatively account for the influence of both the PSD and the physicochemical characteristics of the dispersions is experimentally assessed. An analysis, consistent with theoretical concepts, of the data with semiempirical correlations is proposed. Next, with values of the parameters of the viscosity equation obtained experimentally, the effect of a latex with a 70% solid content on the low shear viscosity is examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3936–3946, 2004  相似文献   
59.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   
60.
Starch belongs to the polyglucan group. This type of polysaccharide shows a broad β-relaxation process in dielectric spectra at low temperatures, which has its molecular origin in orientational motions of sugar rings via glucosidic linkages. This chain dynamic was investigated for α(1,4)-linked starch oligomers with well-defined chain lengths of 2, 3, 4, 6, and 7 anhydroglucose units (AGUs) and for α(1,4)-polyglucans with average degrees of polymerization of 5, 10, 56, 70, and so forth (up to 3000; calculated from the mean molecular weight). The activation energy (Ea) of the segmental chain motion was lowest for dimeric maltose (Ea = 49.4 ± 1.3 kJ/mol), and this was followed by passage through a maximum at a degree of polymerization of 6 (Ea = 60.8 ± 1.8 kJ/mol). Subsequently, Ea leveled off at a value of about 52 ± 1.5 kJ/mol for chains containing more than 100 repeating units. The results were compared with the values of cellulose-like oligomers and polymers bearing a β(1,4)-linkage. Interestingly, the shape of the Ea dependency on the chain length of the molecules was qualitatively the same for both systems, whereas quantitatively the starch-like substances generally showed higher Ea values. Additionally, and for comparison, three cyclodextrins were measured by dielectric relaxation spectroscopy. The ringlike molecules, with 6, 7, and 8 α(1,4)-linked AGUs, showed moderately different types of dielectric spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 188–197, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号