首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2397篇
  免费   416篇
  国内免费   364篇
化学   1876篇
晶体学   25篇
力学   12篇
综合类   7篇
数学   40篇
物理学   1217篇
  2024年   7篇
  2023年   33篇
  2022年   36篇
  2021年   54篇
  2020年   106篇
  2019年   84篇
  2018年   59篇
  2017年   64篇
  2016年   102篇
  2015年   89篇
  2014年   95篇
  2013年   184篇
  2012年   142篇
  2011年   130篇
  2010年   98篇
  2009年   145篇
  2008年   141篇
  2007年   217篇
  2006年   133篇
  2005年   85篇
  2004年   100篇
  2003年   147篇
  2002年   116篇
  2001年   172篇
  2000年   114篇
  1999年   81篇
  1998年   78篇
  1997年   76篇
  1996年   52篇
  1995年   50篇
  1994年   41篇
  1993年   28篇
  1992年   25篇
  1991年   19篇
  1990年   22篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   6篇
  1977年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有3177条查询结果,搜索用时 15 毫秒
91.
Ab initio molecular orbital calculations using the STO3-21G basis set has been carried out for the cluster series Na n + , Na n , and Na n (wheren=2–7). The basis set is shown to be reliable compared with more extensive basis sets at the Hartree-Fock level. Thirty-one optimized structures are reported and discussed, many of which (especially for the anions) have not been considered. The STO3-21G//STO3-21G calculations suggest that for most of the species the optimum geometries are planar. In particular, the optimized structures for the anionic species should provide a starting point for more sophisticated configuration interaction calculations.  相似文献   
92.
Diphenylphosphine oxidatively adds to the ReRe bonds of Re2 X 4(-dppm)2 (X=Cl or Br; dppm=Ph2PCH2PPh2) and Re2Cl4(-dpam)2 (dpam=Ph2AsCH2AsPh2) to afford the dirhenium(III) complexes Re2(-X)(-PPh2)HX 3(-LL)2. The dppm complexes have also been prepared from the reactions of Re2(-O2CCH3)X 4(-dppm)2 with Ph2PH, and a similar strategy has been used to prepare Re2(-Cl)(-PPh2)HCl3(-dmpm)2 (dmpm=Me2PCH2PMe2) from Re2(-O2CCH3)Cl4(dmpm)2. Phenylphosphine likewise reacts with Re2 X 4(-dppm)2 to give Re2(-X)(-PHPh)HX 3(-dppm)2. An X-ray crystal structure determination on Re2(-Cl)(-PPh2)HCl3(-dppm)2 confirms its edge-shared bioctahedral structure. This complex crystallizes in the space group (No. 148) witha=21.699(3) Å, =84.50(4)°,V=10084(5) Å3, andZ=6. The structure was refined toR=0.049 (R w 0.069) for 5770 data withI>3.0(I). The Re-Re distance is 2.5918(7) Å. Oxidation of the bromide complex Re2(-Br)(-PPh2)HBr3(-dppm)2 with NOPF6 produces the unusual dirhenium(III, II) cation [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]+ which has been structurally characterized as its perrhenate salt, [Re2(-H)(-Br)[P(O)Ph2]Br2(NO)(-dppm)2]ReO4 · 2CH2Cl2. This complex crystallizes in the space group (No. 2) witha=14.187(7) Å,b=16.419(5) Å,c=16.729(5) Å, =98.76(2)°, =110.11(3)°, =104.66(3)°,V=3414(6) Å3,Z=2. The structure was refined toR=0.040 (R w =0.051) for 5736 data withI>3.0(I). The presence of a phosphorus-bound [P(O)Ph2] ligand, a linear nitrosyl and a bridging hydrido ligand has been confirmed. The Re-Re distance is 2.6273(8) Å.  相似文献   
93.
The results of quantum chemical calculations of the electronic structure and geometry of octahedral clusters [Mo6S8(CN)6]6−, [Mo6Se8(CN)6]6−, [Re6S8(CN)6]4−, and Rh6(CO)16 by the ab initio SCF (RHF) and DFT (B3LYP) methods with various basis sets are presented. The electronic states of the clusters under study in ideal spherically symmetric potential were classified in the orbital quantum number l (1s, 1p, 1d, 1f, 1g, 1h, 1i), l = 0–6. In real crystal field with Oh symmetry these states are split. The calculated new electronic states were matched to the irreducible representations of the point symmetry group Oh. The polarizabilities of the compounds considered are 55–65 Å3. A new model for the electronic structure of octahedral clusters containing M6 groups was proposed. The model is based on the idea of free electrons moving in spherically symmetric potential field. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2617–2624, December, 2005.  相似文献   
94.
The photoionization of (pro)(n)DHB (pro = proline, DHB = 2,5-dihydroxybenzoic acid, n = 0, 1, 2 or 4) clusters was studied both experimentally and computationally. Experimentally the (pro)(n)DHB clusters are generated in the gas phase by laser desorption and supersonic jet entrainment. The photoionization thresholds are then determined by the mass-selective measurement of both one- and two-color photoionization efficiency curves. These experiments demonstrate that the ionization energies (IEs) of the (pro)(n)DHB clusters are substantially reduced in comparison with the IE of free DHB. Computational studies of the (pro)(n)DHB clusters provide insights into the mechanism of IE reduction. For the (pro)DHB system the IE reduction results from spin delocalization in the ion state of the cluster. In contrast, for the (pro)(2)DHB and (pro)(4)DHB clusters the IE reduction results from an inductive delocalization of electron density from pro to DHB in the ground state of the cluster. This latter effect, which is a result of the specific hydrogen-bonding interactions occurring in the mixed clusters, leads to IE reductions of >1 eV. Finally, determination of the energetics of the (pro)(2)DHB radical cation demonstrate that the DHB-to-proline proton transfer reaction is a barrierless, exoergic process in the ion state and that energetic demands for cluster dissociation to protonated (pro)(2) plus a deprotonated DHB radical are substantially lower than those for cluster dissociation to (pro)(2) plus DHB(+*). Cumulatively, these studies provide new energetic and mechanistic insights into both primary and secondary MALDI ionization processes.  相似文献   
95.
Four triosmium carbonyl clusters bearing terminal pyrazines, bridging hydroxy and methoxycarbonyl ligands of general formula [Os3(CO)9(μ-OH)(μ-OMeCO)L] (1, L = pyrazine; 2, L = 2-methylpyrazine; 3, L = 2,3-dimethylpyrazine; 4, L = 2,3,5-trimethylpyrazine) were synthesized by the reactions of [Os3(CO)12] with the corresponding pyrazine derivatives and water in the presence of a methanolic solution of Me3NO in moderate yields. Compounds [Os3(CO)9(μ-OH)(μ-OMeCO)L] react with a series of two electron donor ligands, L′ at ambient temperature to give [Os3(CO)9(μ-OH)(μ-OMeCO)L′] (5, L′ = PPh3; 6, L′ = P(OMe)3; 7, L′ = tBuNC; 8, L′ = C5H5N) in good yields by the displacement of the pyrazine ligands. This implies that the pyrazine ligands in 1–4 are relatively labile. Compounds 2, 3, 4, and 8 were characterized by single crystal X-ray diffraction analyses. All the four compounds possess two metal–metal bonds and a non-bonded separation of two osmium atoms defined by Os(1)Os(3), which are simultaneously bridged by OH and MeOCO ligands and a heterocyclic ligand is terminally coordinated to one of the two non-bonded osmium atoms.  相似文献   
96.
A new family of quaternary carbon and nitrogen containing Rare Earth (RE: Sc, Y, Ho, Er, Tm and Lu) borides: REB15.5CN, has been synthesized and structurally characterized by powder X-ray diffraction data. They are all isotypic with Sc1−xB15.5CN whose structure was solved based on single-crystal X-ray data and HRTEM investigations. The structure refinement converged at a R(F2) value of 0.044 for 364 reflections. The new structure type of Sc1−xB15.5CN is composed of a three-dimensional network based on interconnected slabs of boron (B12)ico icosahedra and (B6)oct octahedra. A linear [CBC] chain and nitrogen tightly bridges icosahedra. Sc partially occupies voids in the sheets of boron octahedra. It crystallizes with the trigonal space group P3m1, with Z=2. Lattice parameters (nm) are as follows: for RE: Sc, a,b=0.5568(4), c=1.0756(2); Y, a,b=0.55919(6), c=1.0873(2); Ho, a,b=0.55883(7), c=1.0878(6); Er, a,b=0.55889(5), c=1.0880(6); Tm, a,b=0.5580(1), c=1.0850(6); Lu, a,b=0.55771(9), c=1.0839(4). Magnetic characterization of ErB17C1.3N0.6 has been performed.  相似文献   
97.
Three and tetranuclear ring clusters have been obtained by treatment of [Re2(CO)8(THF)2] with carbonyl-rhenates containing two terminal hydrides. The reaction with [ReH2(CO)4]- provided a selective route to the previously known [Re3(-H)2(CO)12]- triangular cluster anion 1. The reaction with [Re2H2(-H)(CO)8]- gave the novel [Re4(-H)3(CO)16]- anion 2, containing a rare example of a puckered-square metal cluster. Protonation of 1 is known to afford the neutral [Re3(-H)3(CO)12] species 3. Analogously the reaction of 2 with a strong acid afforded the previously known square metal clusters [Re4(-H)4(CO)16] 4. The reaction could not be reversed by treatment with bases. Photolysis of 4 gave the unsaturated complex [Re2(-H)2(CO)8] 5: this is the reverse of the dimerization reaction, that in THF at room temperature produces 4 from 5. Thermal treatment (reflux in cyclohexane for 24 h) left 4 almost unchanged. A single crystal X-ray analysis of [NEt4]2 showed a s/e/s/s (e=eclipsed, s=staggered) conformation of the Re(CO)4 units, leading to a puckered geometry of the ring, at variance with the square-planar geometry of 4 (all eclipsed). Two of the three hydrides of 2 have been located as bridging the Re–Re edges from inside the metal ring, as previously observed in 4. Density functional computations indicated a puckered conformation as the most stable for both 2 and 4, with very low activation energies for ring inversion (6.6 and 2.2 kcal·mol-1, respectively), but ruled out solid state fluxionality for 4, whose observed planar geometry must be attributed to packing stabilization.  相似文献   
98.
Summary A comparison of three binary mobile phases in LC separation of C60 and C70 fullerences on chemically bonded 2,4-dinitroanilinopropyl (DNAP) stationary phase was carried out, n-Hexane-benzene has been found to be the best mobile phase for efficient separation of the all-carbon molecules permitting high loads in preparative LC.  相似文献   
99.
The concept of crystalline module, that is, an unambiguously isolated, repeated quasi-molecular element, is introduced. This concept is more general than the concept of crystal lattice. The generalized modular approach allows extension of the methods and principles of crystallography to quasi-crystals, clusters, amorphous solids, and periodic biological structures. Principles of construction of aperiodic, nonequilibrium regular modular structures are formulated. Limitations on the size of icosahedral clusters are due to the presence of spherical shells with non-Euclidean tetrahedral tiling in their structure. A parametric relationship between the structures of icosahedral fullerenes and metal clusters of the Chini series was found.  相似文献   
100.
Raman spectra of aqueous Zn(II)–perchlorate solutions were measured over broad concentration (0.50–3.54 mol-L–1) and temperature (25–120°C) ranges. The weak polarized band at 390 cm–1 and two depolarized modes at 270 and 214 cm–1 have been assigned to 1(a 1g), 2(e g), and 5(f 2g) of the zinc–hexaaqua ion. The infrared-active mode at 365 cm–1 has been assigned to 3(f 1u). The vibrational analysis of the species [Zn(OH2) 2 + ] was done on the basis of O h symmetry (OH2 as point mass). The polarized mode 1(a 1g)-ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width at half height, and intensity) have been examined. The position of the 1(a 1g)-ZnO6 mode shifts only about 4 cm–1 to lower frequencies and broadens by about 32 cm–1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaqua–Zn(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. These findings are in contrast to ZnSO4 solutions, recently measured by one of us, where sulfate replaces a water molecule of the first hydration sphere. Ab initio geometry optimizations and frequency calculations of [Zn(OH2) 2 + ] were carried out at the Hartree–Fock and second-order Møller–Plesset levels of theory, using various basis sets up to 6-31 + G*. The global minimum structure of the hexaaqua–Zn(II) species corresponds with symmetry T h. The unscaled vibrational frequencies of the [Zn(OH2) 2 + ] are reported. The unscaled vibrational frequencies of the ZnO6, unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2) 2 + ] was calculated and accounts for ca. 66% of the experimental single-ion hydration enthalpy for Zn(II).Ab initio geometry optimizations and frequency calculations are also reported for a [Zn(OH2) 2 18 ] (Zn[6 + 12]) cluster with 6 water molecules in the first sphere and 12 in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6 + 12] cluster correspond well with the observed frequencies in solution. The 1-ZnO6 (unscaled) mode occurs at 388 cm–1 almost in perfect correspondence to the experimental value. The theoretical binding enthalpy for [Zn(OH2) 2 18 ] was calculated and is very close to the experimental single ion-hydration enthalpy for Zn(II). The water molecules of the first sphere form strong hydrogen bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号