首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   937篇
  免费   147篇
  国内免费   15篇
化学   1089篇
晶体学   1篇
物理学   9篇
  2024年   1篇
  2023年   7篇
  2022年   19篇
  2021年   27篇
  2020年   33篇
  2019年   32篇
  2018年   16篇
  2017年   14篇
  2016年   39篇
  2015年   53篇
  2014年   51篇
  2013年   57篇
  2012年   45篇
  2011年   46篇
  2010年   34篇
  2009年   48篇
  2008年   49篇
  2007年   41篇
  2006年   52篇
  2005年   54篇
  2004年   49篇
  2003年   64篇
  2002年   191篇
  2001年   14篇
  2000年   8篇
  1999年   3篇
  1997年   16篇
  1996年   8篇
  1995年   12篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1099条查询结果,搜索用时 31 毫秒
41.
Practical syntheses of 2‐keto‐3‐deoxy‐D ‐xylonate (D ‐KDX) and 2‐keto‐3‐deoxy‐L ‐arabinonate (L ‐KDA) that rely on reaction of the anion of ethyl 2‐[(tert‐butyldimethylsilyl)oxy]‐2‐(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O‐silyl‐enol esters, have been developed. This has enabled us to confirm that a 2‐keto‐3‐deoxy‐D ‐gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro‐aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5‐sugars D ‐xylose and L ‐arabinose.  相似文献   
42.
Pseudomonas aeruginosa is an opportunistic Gram‐negative bacterium that can cause life‐threatening infections in critically ill and cystic fibrosis patients. The Psl exopolysaccharide of P. aeruginosa offers an attractive serotype‐independent antigen for the development of immunotherapies. Here, the first chemical synthesis of a panel of oligosaccharides derived from the exopolysaccharide of P. aeruginosa by a synthetic strategy that efficiently deals with the stereoselective installation of several β‐mannosides and the formation of a mannoside that is extended by saccharide moieties at C‐1, C‐2, and C‐3 in a crowded 1,2,3‐cis configuration is described. The approach was employed to prepare tetra‐, penta‐, and hexa‐ and decasaccharide part structures. The compounds were employed to define the epitope requirements of several functionally active monoclonal antibodies (mAbs) that can bind three distinct epitopes of Psl (class I, II, and III). The class II mAb reacted potently with each oligosaccharide indicating its epitope resides within the tetrasaccharide and does not require the branched mannoside of Psl. The class III antibody did not bind the tetra‐ or pentasaccharide; however, it did react potently with the hexasaccharide and weakly with the decasaccharide, suggesting a terminal glucoside is required for optimal binding. Unexpectedly, the class I mAb did not bind any of the oligosaccharides indicating that Psl contains a yet to be elucidated sub‐stoichiometric isoform. This study demonstrates that functional activity of a mAb does not only depend on the avidity of binding but also on the location of an epitope within a bacterial polysaccharide. The results also provide a strong impetus to analyze further the structure of Psl to identify the class I epitope, that is expected to provide an attractive target for the development of a synthetic vaccine for P. aeruginosa.  相似文献   
43.
By displaying different O‐glycans in a multivalent mode, mucin and mucin‐like glycoproteins are involved in a plethora of protein binding events. The understanding of the roles of the glycans and the identification of potential glycan binding proteins are major challenges. To enable future binding studies of mucin glycan and glycopeptide probes, a method that gives flexible and efficient access to all common mucin core‐glycosylated amino acids was developed. Based on a convergent synthesis strategy starting from a shared early stage intermediate by differentiation in the glycoside acceptor reactivity, a common disaccharide building block allows for the creation of extended glycosylated amino acids carrying the mucin type‐2 cores 1–4 saccharides. Formation of a phenyl‐sulfenyl‐N‐Troc (Troc=trichloroethoxycarbonyl) byproduct during N‐iodosuccinimide‐promoted thioglycoside couplings was further characterized and a new methodology for the removal of the Troc group is described. The obtained glycosylated 9‐fluorenylmethoxycarbonyl (Fmoc)‐protected amino acid building blocks are incorporated into peptides for multivalent glycan display.  相似文献   
44.
Monosaccharides and disaccharides are important dietary components, but if insufficiently metabolized by some population subgroups, they are also linked to disease patterns. Thus, the correct analytical identification, quantification, and labeling of these food components are crucial to inform and potentially protect consumers. Enzymatic assays and high-performance anion-exchange chromatography with pulsed amperometric detection are established methods for the quantification of monosaccharides and disaccharides that, however, require long measuring times (60–180 min). Accelerated methods for the identification and quantification of the nutritionally relevant monosaccharides and disaccharides d -glucose, d -galactose, d -fructose, sucrose, lactose, and maltose were therefore developed. To realize this goal, the NMR experiments HSQC (heteronuclear single quantum coherence) and acceleration by sharing adjacent polarization (ASAP)-HSQC were applied. Measurement times were reduced to 27 and 6 min, respectively, by optimizing the interscan delay and applying non-uniform sampling. The optimized methods were used to quantify d -glucose, d -galactose, d -fructose, sucrose, and lactose in various dairy products. Results of the HSQC and ASAP-HSQC methods are equivalent to the results of the reference methods in terms of both precision and accuracy, demonstrating that these methods can be used to correctly analyze nutritionally relevant monosaccharides and disaccharides in short times.  相似文献   
45.
Due to their high stability towards enzymatic hydrolysis C-acyl glycosidic compounds are useful synthetic intermediates for potential candidates in drug discovery. Syntheses for C-acyl mannosides have remained scarce and usually employ donors obtained from lengthy syntheses. Furthermore, syntheses of unprotected C-acyl mannosides have not been reported so far, due to the incapability of the C-acyl mannoside motif with deprotection conditions for protective groups commonly used in carbohydrate chemistry. Herein, we report an efficient and highly α-selective four-step one-pot method for the synthesis of C-acyl α-d -manno-, l -rhamno- and d -lyxopyranosides from easily accessible persilylated monosaccharides and dithianes requiring only trace amounts of a copper source as catalyst and explain the crucial role of the catalyst by mechanistic studies. Furthermore, the C-acyl α-glycosides were easily isomerized to give rapid access to their β-anomers.  相似文献   
46.
The conformational changes in a sugar moiety along the hydrolytic pathway are key to understand the mechanism of glycoside hydrolases (GHs) and to design new inhibitors. The two predominant itineraries for mannosidases go via OS2B2,51S5 and 3S13H41C4. For the CAZy family 92, the conformational itinerary was unknown. Published complexes of Bacteroides thetaiotaomicron GH92 catalyst with a S-glycoside and mannoimidazole indicate a 4C14H5/1S51S5 mechanism. However, as observed with the GH125 family, S-glycosides may not act always as good mimics of GH's natural substrate. Here we present a cooperative study between computations and experiments where our results predict the E5B2,5/1S51S5 pathway for GH92 enzymes. Furthermore, we demonstrate the Michaelis complex mimicry of a new kind of C-disaccharides, whose biochemical applicability was still a chimera.  相似文献   
47.
Acyl group migration affects the synthesis, isolation, manipulation and purification of all acylated organic compounds containing free hydroxyl groups, in particular carbohydrates. While several isolated studies on the migration phenomenon in different buffers have been reported, comprehensive insights into the overall migration process in different monosaccharides under similar conditions have been lacking. Here, we have studied the acyl migration in different monosaccharides using five different acyl groups by a combination of experimental, kinetic and theoretical tools. The results show that the anomeric configuration in the monosaccharide has a major influence on the migration rate, together with the relative configurations of the other hydroxyl groups and the nature of the migrating acyl group. Full mechanistic model, based on computations, demonstrates that the acyl migration proceeds through an anionic stepwise mechanism with linear dependence on the [OH] and the pKa of the hydroxyl group toward which the acyl group is migrating.  相似文献   
48.
β-Galactose derivatives have recently been reported to selectively inhibit galectin-3, and a library of O3-arylated galactosides with varying substitution patterns was designed to study such inhibitions further. The O3-arylated galactosides were synthesized using diaryliodonium salts under mild and transition metal free conditions, providing the target products in moderate to good yields. An O3-trifluoroethylated galactoside was also synthesized using iodonium salt chemistry. Azido-substituted products were subsequently transformed into the corresponding triazoles. After deprotection, a selection of galactoside derivatives were evaluated for inhibitory potencies against galectins-1, 3, 4 N (N-terminal domain), 4 C (C-terminal domain), 7, 8 N, 8 C, 9 N, and 9 C and one compound with promising affinity and selectivity for both the N- and C-terminal domain of galectin-9 was discovered.  相似文献   
49.
Arabinogalactan, a microheterogeneous polysaccharide occurring in plants, is known for its allergy-protective activity, which could potentially be used for preventive allergy treatment. New treatment options are highly desirable, especially in a preventive manner, due to the constant rise of atopic diseases worldwide. The structural origin of the allergy-protective activity of arabinogalactan is, however, still unclear and isolation of the polysaccharide is not feasible for pharmaceutical applications due to a variation of the activity of the natural product and contaminations with endotoxins. Therefore, a pentasaccharide partial structure was selected for total synthesis and subsequently coupled to a carrier protein to form a neoglycoconjugate. The allergy-protective activity of arabinogalactan could be reproduced with the partial structure in subsequent in vivo experiments. This is the first example of a successful simplification of arabinogalactan with a single partial structure while retaining its allergy-preventive potential.  相似文献   
50.
The scarcity and expense of access to L ‐sugars and other rare sugars have prevented the exploitation of their biological potential; for example D ‐psicose, only recently available, has been recognized as an important new food. Here we give the definitive and cheap synthesis of 99.4% pure L ‐glucose from D ‐glucose which requires purification of neither intermediates nor final product other than extraction into and removal of solvents; a simple crystallization will raise the purity to >99.8%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号