首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   941篇
  免费   147篇
  国内免费   15篇
化学   1093篇
晶体学   1篇
物理学   9篇
  2024年   1篇
  2023年   7篇
  2022年   23篇
  2021年   27篇
  2020年   33篇
  2019年   32篇
  2018年   16篇
  2017年   14篇
  2016年   39篇
  2015年   53篇
  2014年   51篇
  2013年   57篇
  2012年   45篇
  2011年   46篇
  2010年   34篇
  2009年   48篇
  2008年   49篇
  2007年   41篇
  2006年   52篇
  2005年   54篇
  2004年   49篇
  2003年   64篇
  2002年   191篇
  2001年   14篇
  2000年   8篇
  1999年   3篇
  1997年   16篇
  1996年   8篇
  1995年   12篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1103条查询结果,搜索用时 31 毫秒
31.
Carbohydrates are used in nature as molecular recognition tools. Understanding their conformational behavior upon aggregation helps in rationalizing the way in which cells and bacteria use sugars to communicate. Here, the simplest α-hydroxy carbonyl compound, glycolaldehyde, was used as a model system. It was shown to form compact polar C2-symmetric dimers with intermolecular O–H⋅⋅⋅O=C bonds, while sacrificing the corresponding intramolecular hydrogen bonds. Supersonic jet infrared (IR) and Raman spectra combined with high-level quantum chemical calculations provide a consistent picture for the preference over more typical hydrogen bond insertion and addition patterns. Experimental evidence for at least one metastable dimer is presented. A rotational spectroscopy investigation of these dimers is encouraged, also in view of astrophysical searches. The binding motif competition of aldehydic sugars might play a role in chirality recognition phenomena of more complex derivatives in the gas phase.  相似文献   
32.
The discovery that traditional silver(I)-oxide-promoted glycosidations of glycosyl bromides (Koenigs–Knorr reaction) can be greatly accelerated in the presence of catalytic trimethylsilyl trifluoromethanesulfonate (TMSOTf) is reported. The reaction conditions are very mild that allowed for maintaining a practically neutral pH and, at the same time, providing high rates and excellent glycosylation yields. In addition, unusual reactivity trends among a series of differentially protected glycosyl bromides were documented. In particular, benzoylated α-bromides were much more reactive than their benzylated counterparts under these conditions.  相似文献   
33.
Fluoroalkyl-substituted carbohydrates play relevant roles in diverse areas such as supramolecular chemistry, glycoconjugation, liquid crystals, and surfactants, with direct applications as wetting, antifreeze, and coating agents. In light of these promising applications, new methodologies for the late-stage incorporation of fluoroalkyl RF groups into carbohydrates and derivatives are herein presented as they are relevant to the synthetic carbohydrate community. Previously reviewed protocols for the installation of RF groups onto carbohydrates and derivatives will be succinctly summarized in the light of the new achievements. Fluoroalkyl-substituted iminosugars, on the other hand, are also interesting glycomimetic derivatives with prominent roles as glycosidases and glycosyltransferases inhibitors, as has recently been demonstrated. Also, they positively contribute to the study of sugar–protein interactions and enzyme mechanisms. New advances in the syntheses of fluoroalkyl-substituted iminosugars will also be presented here.  相似文献   
34.
Enterococcus faecalis is one of most important nosocomial and often multi‐antibiotic resistant pathogens responsible for infections that are difficult to treat. Previously, a cell‐wall polysaccharide termed diheteroglycan (DHG) was isolated and characterized as a promising vaccine candidate. However, the configuration of its lactic acid (LA) residue attached to the galactofuranoside unit was not assessed, although it influences conformation of DHG chain in terms of biological recognition and immune evasion. This study proves the R configuration of the LA residue by means of chemical analysis, investigation of intramolecular NMR nuclear Overhauser effects and molecular dynamics simulations of native DHG and corresponding R and S models, which were obtained by using pyranoside‐into‐furanoside rearrangement. As alternative treatment and prevention strategies for E. faecalis are desperately needed, this discovery may offer the prospect of a synthetic vaccine to actively immunize patients at risk.  相似文献   
35.
Direct conversion of fructose-based carbohydrates to 5-ethoxymethylfurfural (EMF) catalyzed by Lewis acid in ethanol was investigated. It was found that BF3·(Et)2O was favorable for 5-hydroxymethylfurfural (HMF) etherification to EMF. BF3·(Et)2O combination with AlCl3·6H2O with the molar ratio of 1 was an effective catalyst system for synthesis of EMF from fructose-based carbohydrates. 55.0%, 45.4% and 23.9% of EMF yields were obtained from fructose, inulin and sucrose under optimized conditions, respectively.  相似文献   
36.
A new triazatruxene‐based fluorescent glycocluster has been designed, synthesized, and fully characterized by NMR spectroscopy and mass spectrometry. Furthermore, its specific and selective binding properties with concanavalin A (Con A) have been investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and turbidity assay. The obtained results showed that the multivalent mannose‐modified triazatruxene exhibited specific binding with Con A, but no binding to peanut agglutinin (PNA) lectin or bovine serum albumin (BSA), corresponding to a two‐orders‐of‐magnitude higher affinity than that of monovalent mannose ligands. Most interestingly, a fluorescence enhancement of the triazatruxene‐based glycocluster was observed upon binding with Con A because of hydrophobic interactions involving sites close to the triazatruxene moiety. Furthermore, the inhibitory ability of the triazatruxene‐based glycocluster against ORN178‐ induced haemagglutination has been investigated by haemagglutination inhibition assay. The results indicated selective binding with ORN178.  相似文献   
37.
Pradimicins (PRMs) and benanomicins are the only family of non‐peptidic natural products with lectin‐like properties, that is, they recognize D ‐mannopyranoside (Man) in the presence of Ca2+ ions. Coupled with their unique Man binding ability, they exhibit antifungal and anti‐HIV activities through binding to Man‐containing glycans of pathogens. Notwithstanding the great potential of PRMs as the lectin mimics and therapeutic leads, their molecular basis of Man recognition has yet to be established. Their aggregate‐forming propensity has impeded conventional interaction analysis in solution, and the analytical difficulty is exacerbated by the existence of two Man binding sites in PRMs. In this work, we investigated the geometry of the primary Man binding of PRM‐A, an original member of PRMs, by the recently developed analytical strategy using the solid aggregate composed of the 1:1 complex of PRM‐A and Man. Evaluation of intermolecular distances by solid‐state NMR spectroscopy revealed that the C2–C4 region of Man is in close contact with the primary binding site of PRM‐A, while the C1 and C6 positions of Man are relatively distant. The binding geometry was further validated by co‐precipitation experiments using deoxy‐Man derivatives, leading to the proposal that PRM‐A binds not only to terminal Man residues at the non‐reducing end of glycans, but also to internal 6‐substituted Man residues. The present study provides new insights into the molecular basis of Man recognition and glycan specificity of PRM‐A.  相似文献   
38.
A general procedure for the assembly of hetero‐bifunctional cubic silsesquioxanes with diverse functionality and a perfectly controlled distribution of functional groups on the inorganic framework has been developed. The method is based on a two‐step sequence of mono‐ and hepta‐functionalization through the ligand‐accelerated copper(I)‐catalyzed azide–alkyne cycloaddition of a readily available octaazido cubic silsesquioxane. The stoichiometry of the reactants and the law of binomial distribution essentially determine the selectivity of the key monofunctionalization reaction when a copper catalyst with strong donor ligands is used. The methodology has been applied to the preparation of a set of bifunctional nano‐building‐blocks with orthogonal reactivity for the controlled assembly of precisely defined hybrid nanomaterials and a fluorescent multivalent probe for application in targeted cell‐imaging. The inorganic cage provides an improved photostability to the covalently attached dye as well as a convenient framework for the 3D multivalent display of the pendant epitopes. Thus, fluorescent bioprobes based on well‐defined cubic silsesquioxanes offer interesting advantages over more conventional fully organic analogues and ill‐defined hybrid nanoparticles and promise to become powerful tools for the study of cell biology and for biomedical applications.  相似文献   
39.
Synthetic ditopic receptors, designed for the molecular recognition of dimannosides, have been prepared by bridging two monotopic units effectively recognizing mannosides with linkers of the appropriate size and flexibility, endowed with hydrogen‐bonding groups. Affinities toward the α and β glycosides of the biologically relevant Manα(1–2)Man disaccharide were measured by NMR spectroscopy and isothermal titration calorimetry (ITC) in polar organic media (30–40 % DMF in chloroform). Significant selectivities and affinities in the micromolar range were observed in most cases, with two newly designed receptors being the most effective receptors of the set, together with a distinct preference of the dimannosides for the (S) enantiomer of the receptor in all cases. A 3D view of the recognition mode was elucidated by a combined NMR spectroscopic/molecular modeling approach, showing the dimannoside included in the cleft of the receptor. Compared to the monotopic precursors, the ditopic receptors showed markedly improved recognition properties, proving the efficacy of the modular receptor design for the recognition of disaccharides.  相似文献   
40.
Branched starch polysaccharides are capable of binding multiple hydrophobic guests, but their exploitation as multivalent hosts and in functional materials is limited by their structural complexity and diversity. Linear α(1–4)‐linked glucose oligosaccharides are known to bind hydrophobic guests inside left‐handed single helices in solution and the solid state. Here, we describe the development of an amphiphilic probe that binds to linear α(1–4)‐linked glucose oligosaccharides and undergoes a conformational switch upon complexation, which gives rise to dramatic changes in the 1H NMR spectrum of the probe. We use this probe to explore hydrophobic binding sites in the branched starch polysaccharides amylopectin and β‐limit dextrin. Diffusion‐ordered (DOSY), nuclear Overhauser effect (NOESY) and chemical shift perturbation (HSQC) NMR experiments are utilised to provide evidence that, in aqueous solution, branched polysaccharides bind hydrophobic guests in well‐defined helical binding sites, similar to those reported for complexation by linear oligosaccharides. By examining the binding affinity of the probe to systematically enzymatically degraded polysaccharides, we deduce that the binding sites for hydrophobic guests can be located on internal as well as external branches and that proximal α(1–6)‐linked branch points weaken but do not prevent complexation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号